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Background and Significance

Clinical informatics researchers often depend on the reusability
ofelectronichealth record (EHR)data todesignmanyof thenew
methods and systems that improve clinical practice and re-
search. For example, innovations such as those that streamline
research subject selection from patient populations require

access to patient data.1 Other applications that provide preci-
sion medicine at the point of patient care must compute
solutions using these data.2 This research encompasses a
wide variety of data reuse, including retrospective analyses,
experimental system development, and data modeling. How-
ever, EHRs often fall short of this need for reusable data, either
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Abstract Objective Clinical informatics researchers depend on the availability of high-quality
data from the electronic health record (EHR) to design and implement new methods
and systems for clinical practice and research. However, these data are frequently
unavailable or present in a format that requires substantial revision. This article reports
the results of a review of informatics literature published from 2010 to 2016 that
addresses these issues by identifying categories of data content that might be included
or revised in the EHR.
Materials and Methods We used an iterative review process on 1,215 biomedical
informatics research articles.Weplaced them into generic categories, reviewedand refined
the categories, and then assigned additional articles, for a total of three iterations.
Results Our process identified eight categories of data content issues: Adverse Events,
Clinician Cognitive Processes, Data Standards Creation andData Communication, Genomics,
Medication List Data Capture, Patient Preferences, Patient-reported Data, and Phenotyping.
Discussion These categories summarize discussions in biomedical informatics literature
that concern data content issues restricting clinical informatics research. These barriers to
research result from data that are either absent from the EHR or are inadequate (e.g., in
narrative text form) for the downstream applications of the data. In light of these
categories, we discuss changes to EHR data storage that should be considered in the
redesign of EHRs, to promote continued innovation in clinical informatics.
Conclusion Based on published literature of clinical informaticians’ reuse of EHR data,
we characterize eight types of data content that, if included in the next generation of
EHRs, would find immediate application in advanced informatics tools and techniques.
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lacking the information entirely or storing it in a format that
requires time-consuming revisions for machine interpretabil-
ity.3,4 Clinical informaticians are reporting some of these defi-
ciencies,5whilemakingdowithextractingand inferringpatient
information from current EHRs for various purposes.

Givenbroaderdiscussions surrounding redesigning theEHR
are taking place,6,7 it is timely to examine the systems current
state in order to advance the EHR and address its glaring
shortcomings for clinical informatics researchers. Studies
showEHRscontinue tomiss importantpatientdata8orprovide
other information in a form that is not machine-processable,
complicating data analysis.3 Both shortcomings are critical to
overcome for clinical informatics research and suggest that the
data content of these systems requires attention. It is impera-
tive to appropriately store information according to data
storage standards and properly capture data types. However,
updating the information captured by the EHR and revising
storage and retrievalmethodswill be important to advance the
health systems for use as a learning health system.9

To catalogue EHR shortcomings that limit data reusability,
we have conducted a scoping review of the research infor-
matics literature to identify categories of data content that
are inadequate or need revision. These categories can serve
as a foundation for establishing some of the data require-
ments for the next generation of EHRs.

Materials and Methods

Weconducted a reviewof the informatics literature to identify
discussions regarding the limited reusability of EHR data and
to group these discussions into meaningful categories. To
accomplish this task, we first performed a broad, preliminary
search to locate journals that most frequently contained arti-
cles with this type of content. We selected the journals by
using the broad search term “electronic health records” in
PubMed without any other limitation and scanning the first
2 years of the results. After limiting the focus of the search
based on the preliminary investigation, we then used a
standardized search strategy and an iterative expert review
process (discussed later) to identify the data content cate-
gories through consensus. The iterative process was used to
ensure as uniform category creation and article categorization
as possible. This study design was selected to encompass a
broadoverviewof thediscussions in the literature and provide
new perspective on areas in EHR data that need to be
addressed for reusability. While the study design primarily
follows the strategy set forth in the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
line,10 several of the elements in the PRISMA checklist were
not relevant to the present study as shown in the
►Supplemental Material, available in the online version.

Search Strategy
We searched the PubMed database for informatics literature
published between January 2010 and March 2016 to find
recent, relevant English-language articles that addressed
current limitations of EHR data. Our broad, preliminary
search through PubMed yielded several journals with greater

informatics relevant to the topic andwe therefore limited our
search to the following journals:

• Journal of American Medical Informatics Association.
• New England Journal of Medicine.
• Journal of Pathology Informatics.
• Methods of Information in Medicine.
• International Journal of Medical Informatics.
• Journal of Medical Internet Research.
• Proceedings of the AMIA Annual Fall Symposium.

Additionally, the following inclusion criteriawere created to
limit the scope of the review to address data content in the EHR
and the specific limitations currently present in the system:

1. Data not stored in the EHR that would be useful for patient
care or research.

2. Data that would be more efficient to store in the EHR but
are typically derived from the information already stored.

3. Data stored in an inefficient manner for downstream use
(e.g., research or clinical decision support [CDS]).

Articles were excluded from the review if they met one of
the following exclusion criteria:

1. No discussion of EHR data.
2. Only discussion of user interfacemodifications to the EHR

for data already present.
3. Only discussion of derived data that, for efficiency rea-

sons, should remain derived rather than stored (e.g., data
subject to constant change).

The search pattern began with the broad search term
“(electronic health record) OR (electronicmedical record) OR
(electronic health records) OR (electronic medical records)”
to initially capture a wide variety of articles for review. One
reviewer (T.I.K.) surveyed the literature from newest to
oldest three times to locate articles matching the inclusion
criteria. Per iteration, the reviewer evaluated all the articles
listed in►Table 1 first by title, then by abstract if the title did
not clearly include/exclude the article, and finally by full text
if necessary. Following each pass through the literature, all
authors served as evaluators of a subset to review the articles
selected as meeting the inclusion criteria, the categories of
data content created, and the placement of articles into each
of the categories. Disagreements were resolved with discus-
sion to reach a consensus.

Analysis
We used consensus as the primary mechanism for moving
forward after each standardized iteration through the litera-
ture (described below). However, we also calculated an esti-
mated inter-rater reliability (IRR) after each one. As each
evaluator was allowed to classify an article into multiple
categories, Kraemer’s modified kappa coefficient was used.11

Briefly, for each iteration, we chose a random subset of 30
articles as a representative yet efficient sample from the total
articles reviewed per iteration (►Table 1). Each evaluator
placed the articles into the categories created for the current
iteration or chose to create additional ones. The categories
were consolidatedbasedon similarity andKraemer’smodified
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kappa coefficient was calculated by first computing Fleiss’s
kappa for multiple categories and raters12 and adding Krae-
mer’s correction for each rater potentially choosing multiple
categories.11

Article Classification
Our search strategy’s goal was to characterize potential areas
for expanding the current data content of the EHR. Our three
passes through the literature included several article classifica-
tionsteps, followedbyevaluationsteps toachieveconsensuson
the categories of data content and the classification of articles
into those categories (see ►Fig. 1). We used Zotero 4.0 to
manage categorization and access to the articles throughout
each pass.

During the first pass through the literature, the reviewer
(T.I.K.) created general categories for the articles that met the
inclusion criteria. This pass produced the first version of
categories to be used for the remaining literature searches.
Following review of a set number of articles, we selected a
subset of 30 articles for all evaluators to review and indepen-

dently classify into the list of categories created. During this
evaluation, the evaluators reviewed theappropriateness of the
articles based on the inclusion criteria, the appropriateness of
the categories created and their respective definitions, and the
classification of each article. After the evaluation, the evalua-
tors discussed the decisions made regarding each of these
topics and made changes based on consensus.

The second pass through the literature included all articles
in the chosen time frame. The reviewer classified the remain-
ing articles according to the second version of the categories
(see►Fig. 1).We then chose a second sample of 30 articles for
all evaluators to review and classify using the revised set of
categories. Again, we resolved disagreements regarding cate-
gories, category definitions, and article classification through
discussion and created a third version of categories.

The reviewer then performed the third pass through all
articles and classified them according to the third version of
the categories. We performed an evaluation of 30 articles
and discussed the previously mentioned topics to resolve
disagreements by consensus.

Table 1 Results from the iterative review process

Evaluation
step

Articles
reviewed

Articles
categorized

IRR Categories
postevaluation

Evaluation 1 655 71 0.4401 8

Evaluation 2 1,062 153 0.5567 8

Evaluation 3 1,215 165 0.6864 8

Notes: Each evaluation step indicates the number of articles that were reviewed, the number that were put into categories of data content for
expanding the EHR, the inter-rater reliability (IRR) after all evaluators reviewed a sample of 30 articles, and the final categories after each evaluation.

Fig. 1 Literature search and article classification strategy for identifying potential areas of expansion for electronic health record data content. Articles
returned by the search term “(electronic health record) OR (electronicmedical record) OR (electronic health records) OR (electronicmedical records)”were
filtered by journal and the remainingarticlesmatching the inclusion criteriawere placed intogeneral categories . A sample of 30 articles and their respective
categories from this first pass through the literature were then evaluated for both the appropriateness of the article, the appropriateness of the categories,
and the relevance of the articles to the categories (). A second version of categories was then created and the process was repeated twomore times ( and )
using the previous set of categories from each pass yielding a final version of categories.
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Results

Overview
Our preliminary search for articles published between Janu-
ary 2010 andMarch 2016 retrieved 26,031 citations. Using the
journals identified in the preliminary search, the standardized
search returned 1,215 articles that were then reviewed based
on the inclusion and exclusion criteria. The method of con-
sensus used to select articles for each iteration then resulted in
a different number of articles selected from the 1,215 articles
per iteration as discussed below. Additionally, each iteration,
except thefinal, reviewed only a subset of the 1,215 articles to
maintain consensus on category creation and article selection
(see ►Table 1).

For each iteration of the categorization process (see
►Table 1), we reviewed a set number of articles for categor-
ization. The first evaluation did not complete the entire time
span from January 2010 to March 2016 resulting in fewer
number of articles. Additionally, several more articles in the
selected journals were added to the literature after evalua-
tion 2 as well. The IRR increased for each iteration, but the
number of categories remained constant (see ►Table 1).
While the number of categories did not change, we made
modifications to the names of the categories and their
definitions. For example, from the second round of classifi-
cation, the authors agreed to change the category “Drug
Monitoring” to “Medication List Data Capture” and also
changed the definition from:

• Articles describing a need for or the creation of an algo-
rithm or data model to monitor patient use of drugs
whether through abuse, adherence (medication compli-
ance), or incidental use.

• More robust medication data storage (e.g., medications
prescribed by other hospitals, medication and/or illicit
drug abuse information), including additional drug meta-
data (e.g., adherence to medication schedule) that would
allow clinicians to easily determine a patient’s medication
statusalongwith storageofpatientmedication information
in medication list rather than free text.

The categories in ►Table 2 represent the final consensus
categories and definitions chosen by the evaluators after
iteratively classifying the articles. We believe that these
categories represent some of the major concerns raised in
the literature regarding shortcomings of the EHR to provide
data for reusability.

►Table 3 presents an overview of the classification process
and shows anexample of howanarticlewasgrouped into each
category. The information is presented for the final iteration.

Categories for EHR Data Content Expansion

Adverse Events
An adverse event (AE) in medicine is any undesirable event
that occurs during or as the result of treatment, including falls,
adverse drug events (ADEs), and food allergies. While these
events may be recorded in the EHR, this information is
typically not stored in a structured location and detection of

these events post occurrence typically requires searching both
structured and unstructured data. Although some studies
employ techniques such as rule-based detection13 and pattern
matching in free text14 as in phenotyping, many more studies
utilize a combinationof natural languageprocessing (NLP) and
machine learning (ML)15–18 to search the free text. One study
specifically pointed out that while pattern-matchingmethods
could easily extract common side effects of medications, ML
(decision trees in this specific study) was more useful for
extracting more complex symptomatologies as ADEs.14 Once
extracted, the information has multiple downstream applica-
tions including research, reporting, quality improvement, and
prevention.

Clinician Cognitive Processes
The clinician’s cognitive process during patient care is the
reasoning behind decisions made in diagnosing and treating
patients. While the category is broad, studies focus on two
primary aspects: alert overrides and patient handoffs. A list
of reasons for overriding an EHR alert that is customized to
be more relevant to a clinician during patient care has been
shown to improve the appropriateness of the one chosen.19

Other studies have repeatedly shown that structured data
elements reflecting clinical reasoning are important during
the hand-off process, suggesting that clinical reasoning is
vital during communication.20,21 Storing cognitivemaps that
diagram the thought process during patient care is one
effective mechanism of storing this reasoning for use during
hand-offs.22 Additionally, one specific study attempted to
manage the large amount of information to be analyzed
during transfer by studying the effectiveness of a handoff
tool that automatically imported relevant information.23

Data Standards Creation and Data Communication
This category focuses on the ability to unify the data content
acrossmultiple EHRs. Many studies discuss two similar meth-
odologies of unifying the data: (1) standardizing the storage of
the data in a component of the EHR itself24–26 or (2) extracting
the data from the EHR in a standardized format agnostic of the
underlying data structure.27–30 While a handful of these
studies, specifically those focused on data communication,
attempt to solve the issue of general data unification, other
studies attempt to solve only a smaller area, such as oncol-
ogy,31 rare diseases,25 or family health history.32 Multiple
standards have been employed, including HL7, HL7’s Fast
Healthcare Interoperability Resource (FHIR), the Consolidated
Clinical Document Architecture (C-CDA), and the Web Ontol-
ogy Language (OWL), with varying success. However, the
flexibility provided by many of these standards prevents
complete interoperability between systems.

Other studies have focused on someof thedifficulties in the
data modeling process for purposes of standardization. One
study evaluated several of the tools used for modeling clinic
workflow and suggested that the tools are not mature enough
to appropriately handle all modeling requirements.33 Another
study described an application that provided clinicians with
feedback regarding data quality and similarity of reporting
acrossmultiple hospitals in the Netherlands.34While this tool
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improved data quality, the provision of relevant diagnostic
codes still varied greatly between 30 and 100%.

Genomics
Genomic information can include anything from a basic
genetic test designed to identify a single-nucleotide poly-
morphism (SNP) to whole-genome sequencing (WGS). Over-
all, several studies have highlighted a need to improve the
infrastructure used to store genetic information and the
need to implement standard ontologies and semantics re-
gardless of a genetic test’s originating laboratory.35–37 The
results of a genetic test can be used for CDS, provided that
metadata regarding actionability of the test results are
available.38 Pharmacogenetic data (drug-related genetic
data) havemany similarities to their parent category, genetic
data, including the need for standardization39 and metadata
for CDS.40 However, the relationship to medications and

prescriptions opens the potential to creating an association
between a prescribed medication and a genetic test, thereby
annotating reasoning behind the medication choice or
dosage.41

Medication List Data Capture
Medication lists are a common component of any EHR today
and maintain an active record of a patient’s medications,
both current and previous. Several studies focused on im-
proving the accuracy of this list utilize both NLP and ML to
retrieve additional information from the free text. One study
showed the effectiveness of these techniques in monitoring
opioid use in patients who did not have opioid use frequency
recorded in their chart.42 Another used NLP to detect anti-
depression medication use in patients.43 Other studies have
focused on more general omissions in a patient’s medication
list with one predicting missing medication using an ML

Table 2 Number of articles per category after the final iterative review through the literature

Category Description of a need for or the creation of an algorithm to
detect or a data model for…

Number of articles
(citations)

Adverse events The potential for or the occurrence of unexpected and/or
undesirable medical events such as drug allergies, drug side
effects, falls, unexpected diseases, or other treatment-related
injury

2213–18,82–97

Clinician cognitive processes The clinician’s reasons for decisions made in the EHR regarding
patient care, including alert overrides and handoffs

1219–23,98–104

Data standards creation
and data communication

Storage of data for medical fields or aspects of medical fields in a
standard medical format (e.g., HL7, C-CDA, or an author-specific
format) or mapping of data models of commonly used resources
(e.g., Web sites or apps) to standard medical data formats for
the purpose of EHR interoperability among other EHRs and
external applications

2924–34,105–122

Genomics Patient genetic information including WGS, whole-exome, SNP,
and other genetic data from other tests not listed. The genetic
data can be utilized for the purpose of diagnosis, prescription
(pharmacogenomic information), or other medically relevant
purposes

1235–41,123–127

Medication list data capture More robustmedication data storage (e.g., medications prescribed
by other hospitals, medication and/or illicit drug abuse informa-
tion), including additional drug metadata (e.g., adherence to
medication schedule) that would allow clinicians to easily deter-
mine patients’ medication status along with storage of patient
medication information in medication list rather than free text

1442–54,128

Patient preferences Storage of patient’s desires for treatment, therapy, or lack
thereof for health events such as end-of-life care, diseases, or AEs

257,129

Patient-reported data An outcome of a health event (e.g., disease, risk factor) or
therapy (medication schedule, treatment plan) that is reported
by and directly relatable to the patient. Quantification is
sometimes done through the abstract score of quality of life.
Patient-reported data may not be correlated with medically
defined outcomes (increased FEV1 in COPD patients does not
always result in improved QOL for a patient)

1358–64,130–135

Phenotyping Identifying a specific, medically relevant, physical characteristic
(e.g., disease state, current treatment, or physical trait) by
utilizing the presence of clinical data in the medical record (e.g.,
laboratory test results, clinical notes analyzed through NLP, or
physical exam findings)

6113–18,20,24,25,31,32,35,
41–43,45,46,60,64,66,68–187

Note: The categories and their definition of data content described in the literature that could be used to expand the EHR.
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algorithm44 and others highlighting missing medications at
discharge.45,46

A related area of study is the retrieval of both the reason
for a medication’s prescription and the duration of taking a
medication. In the 2009 i2b2 challenge, methods for identi-
fying the reasons for and duration of prescriptions employed
pattern matching (such as regex) combined with NLP, heur-
istics,47,48 and ML.49 All studies concluded that this type of
information was the most difficult to extract.47–54

Patient Preferences
While patient preferences for end-of-life care can be found in
many EHRs, locating these preferences in the system can be
challenging.55 The difficulty in locating this information adds
to the lack of a mechanism for determining if the patient’s
preferences havebeenmet.56Onestudy investigated theuseof
15 end-of-life data elements that could easily determine the
status of end-of-life care with regard to patient preferences.56

Patient preferences also extend to other contexts, including
theability to senda reason foranurse’s call.One studyexplored

the ability to transfer contextual information regarding pa-
tients’ desires along with the nurse’s call that allowed the
nurses tomoreappropriately respondtothepatient’s request.57

Patient-Reported Data
Patient-reported data (PRD) falls into two large subcategories:
(1) data that are directly reported by a patient to a clinician as
something that is relevant to his or her health and (2) sensor
data that are passively collected from the patient through
devices such as smartphones or home-based devices. Regard-
ing directly reported data, the literature currently suggests
that PRD be collected and stored in a standardized method.
Many studies provide possible discrete data elements to be
used, including elements of a personal profile, goals for overall
health andclinic visits, andqualityof life.58Other studies focus
on incorporating social and behavioral determinants of health
as facilitators for patient care.59,60

Several studies have actually shown feasibility of collecting
PRD from sensor data as well. By tying a continuous glucose
monitor to a smartphoneand eventually to theEHR, one group

Table 3 Example articles from each category and the description of their categorization process

Category Title of article in category Description of categorization

Adverse events A long-term follow-up evaluation of EHR
prescribing safety

Article discusses the analysis of prescription
error rates when transitioning between EHRs.
Information retrieval for this study required
data derivation from a chart review

Clinician cognitive processes A novel use of the discrete templated notes
within an EHR software to monitor resident
supervision

This article discusses the specific documen-
tation of resident procedures outside formal
procedures allowing monitoring of resident
training and potentially cognitive reasoning
behind procedures

Data standards creation and
data communication

A methodology for a minimum dataset for
rare diseases to support national centers of
excellence for health care and research

Specifically discusses standard data elements
that could be used for rare diseases for
epidemiology studies

Genomics An EHR-driven algorithm to identify incident
antidepressant medication users

Discusses a pharmacogenomics platform that
focuses on harvesting this type of data for
CDS and reporting. The article specifically
deals with genomic data for CDS

Medication list data capture Creating a scalable clinical pharmacogenomics
service with automated interpretation and
medical record result integration—experience
from a pediatric tertiary care facility

Discusses the design an algorithm for
derivation of antidepressant users from the
EHR data. Indicates missing information on
patient medication lists

Patient preferences An information model for automated assess-
ment of concordance between advance care
preferences and care delivered near the end
of life

Discusses storage of advance care preference
(a patient preference) information in the EHR
in an easier-to-retrieve format

Patient-reported data Assessing older adults’ perceptions of sensor
data and designing visual displays for ambi-
ent environments

Studies the perceptions of elderly patients
toward the use of in-home sensors for the
collection of medical data (patient-reported
due to sensor collection directly from the
sensors). Addresses the collection of this
information

Phenotyping A collaborative approach to developing an
EHR-phenotyping algorithm for drug-induced
liver injury

Discusses the creation of a phenotyping
algorithm designed to identify patients in the
EHR with drug-induced liver injury

Abbreviations: CDS, clinical decision support; EHR, electronic health record.
Note: Each article’s content is described in relation to the reason that it fits in the category (i.e., why it was placed in the category listed).
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showed that passive glucose levels could be captured and
stored in a patient’s chart.61Other studies have experimented
with using smart home sensors for monitoring elderly pa-
tients’ health.62–64

Phenotyping
Phenotyping is the process of identifying cohorts of patients
with desired characteristics (typically disease states). This
output may then be used for downstream purposes in
research. The most common approaches to phenotyping
have been rule based65 and are the simplest methods of
this type potentially utilizing only the diagnosis codes and
problem lists in the EHR. However, due to reasons such as
missing diagnostic codes from a patient’s record or diagnoses
absent from the problem list, rule-based algorithms include
other information, such as medication lists, laboratory
values, and chart reviews to increase the accuracy of phe-
notyping patients.66,67 Once constructed, the rule-based
algorithms are validated and then may be submitted to
one of several public repositories for general use such as
PheKB eMERGE (Phenotype Knowledge Base: Electronic
Medical Records and Genomics), OMOP (Observational
Medical Outcomes Partnership), and others.

Rule-based techniques have been frequently used in the
past. However, the methods needed to construct, validate,
and implement them are time consuming, especially if the
rule requires the interpretation of data found in the free text
of patient’s charts.68,69As a result, alternativemethodologies
have been employed to speed up the phenotyping process,
including the use of NLP and ML. NLP, which uses linguistic
knowledge to allow computers to gather knowledge from
language (speech, text, etc.), has been used with rule-based
algorithms to assist with mining free text70,71 and in con-
junction with ML, a probabilistic modeling technique, to
identify patients using large feature sets.72,73

Because all that is needed is labeled data, both techniques
decrease the time needed to validate and implement the
algorithm. Unfortunately, the initial construction has a large
upfront time cost due to the expense of labeling data to train a
ML algorithm. However, there have been recent attempts to
decrease the timecost byautomating the labeling process.72,74

Of final note is the accuracy of phenotyping algorithms. All
of the aforementioned techniques utilize inferential techni-
ques to phenotype patient cohorts due to the imperfect
capturing of patient phenotypes in the EHR. As a result, those
wishing to use the phenotyping results for a downstream
application must take into account these inaccuracies when
deciding on the phenotyping algorithm to use.75

Discussion

Clinical informatics research focuses on creating newmethods
and systems that depend on diverse, high-quality EHR data,
which are not always present. The purpose of our studywas to
identify categories of data content that would promote the
reusability of data in the EHR for clinical informatics research.
It was not our intent to create an exhaustive list of all data that
should be considered for addition as EHRs undergo natural

evolution, but rather to focus on those data for which reuse
application in informatics are ready and waiting.

One proposed goal for advancement of medical systems is
to create the learning health system.76,77 This system would
incorporate data from patients, clinicians, laboratories, and
many other information sources to translate information to
knowledge. Part of the translation process will require the
appropriate data to be available in a reusable format. The
eight categories we found should be considered a starting
point for revising the next generation of EHRs, built with the
ability to allow data reuse for clinical informatics research
and the advancement of the learning health system.

The categories arenot intended to bea classification system
for published articles; so, we were not concerned about the
occasional differences in how an individual article was classi-
fied. Although the IRR in classification increased aswe revised
our categories with each iteration in the evaluation, it is more
important to note that all evaluators ultimately agreed on the
definitions of these categories and that theywere sufficient to
classify all articles that met our inclusion criteria.

The presence of each of these categories in the literature
unifies them as pieces of the larger problem of EHR data
reuse for clinical informatics research. However, while each
of these categories makes up a component of the discussion,
they also vary in the scope of data content that they cover. For
example, Medication List Data Capture focuses specifically
on themedications and associatedmetadata captured by the
EHR, whereas phenotyping covers a broader aspect of data
content. This discrepancy is expected due to the varying
levels at which EHR data can be reused. Medications cover a
focused area of data content, yet represent a major aspect of
patient treatment. In contrast, phenotyping, which focuses
on identifying disease states, employs a large portion of the
EHR’s data and is naturally larger than other categories.

Additionally, some categories represent novel information
that is not captured by the EHR, such as explicit expression of
clinicians’ cognitive processes. If this information is present in
the EHR, it is typically found only in narrative-free documents
such as clinical notes and hand-off documentation. Other
categories focus on information captured in a form that needs
a revision. For example, phenotyping information is abundant,
yet effective use of this information requires complex pre-
dictive algorithms that can never be 100% accurate.

It is important to note that the categories proposed have
varying degrees of actionability in the clinic, currently. For
example, categories such as Adverse Events, Medication List
Data Capture, and Patient Preferences can typically be im-
mediately acted on with current medical knowledge and
standards of practice. However, other categories, such as PRD
and Genomics, may still require more research to make the
data use more effectively in the clinic. This last statement,
however, highlights the need to make this type of data that
are already in the EHR reusable.

While there are many ways of addressing the capture or
storage structure of the data content in each category, it is
our general observation that most of the projects in each of
the categories described in our literature set would benefit
from a data storage that used a standardized terminology.
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However, not all projects were so bold to request this
explicitly. Questions remain on how to acquire these data
and how to store them appropriately. The current predomi-
nant method for accomplishing this is to require clinicians
(typically nurses and physicians) to take on new structured
data entry tasks (diagnoses, problem lists, medications,
allergies, etc.)—often replicating efforts they had already
expended in writing their notes and reports. Enthusiasm
for such additional responsibilities is often lacking.

Several solutions for each category might exist
(see ►Table 4). Solutions that might alleviate the need for
excessive data entry will require advances in clinical infor-
matics research and possibly policy changes. For example,
most of the categories would benefit from a unified medical
record, whether the data are centralized at a single institu-
tion or distributed at the patient level.78 This system would
unify and relate medical information across all patients,
regardless of the institution providing care. Such a system
would require the use of a standardized, research-controlled
terminology mentioned earlier and would also necessitate

the standardization of a data model for storage. However,
both requirements would enforce interoperability. Addition-
ally, using the categories presented in this study as a starting
point might guide the creation of an information model that
would allow data reusability for researchers with permis-
sions for access. This system would also prevent duplication
of data when patients visit multiple health care institutions.
Coupled with continued development of data communica-
tion standards, such as HL7, a unified medical record would
allow data transfer rather than requiring data entry.

Additionally, other solutions, such as voice recognition
coupledwith NLP, could lower some of the barriers perceived
by those charged with the data entry. While benefitting
multiple categories, transfer and storage of clinician cogni-
tive processes would especially benefit from technology. For
some categories, such as AEs, PRD, and patient preferences,
information could be captured directly from the patient
through patient portals, which are currently in use in limited
circumstances, or monitoring devices such as wearables.
However, for all data entry methods, barriers could be
reduced by making clear the immediate and long-term
advantages of new data capture. For clinicians, this might
come in the form of intelligent decision support that auto-
mates workflow processes. For patients, it might be clear
indications of the medical benefits and progress tracking
over time that new data capture provides.

It is noted that NLP and voice recognition form a solution for
mostof thecategories thathavebeenmentioned. Theexception,
genomics, can be addressed through an automated laboratory
data transfer. As previously discussed, these technologiesmight
alleviate the burden of data entry. Additionally, these technol-
ogies might provide an initial method of implementing a
standard from free text rather than requiring rigid data entry.
Thekeypoint is thatboth technologieswouldalleviate thestrain
on data entry, allowing it to be more flexibly submitted while
potentially maintaining storage in a standardized way. These
technologies would form an additional benefit to those already
mentioned for the unified medical record that also would
benefit most the categories through standardizations.

Moving forward, it is important to recognize that modifica-
tions to the EHR to address the categories presented here will
have a cost associated with them. These costs include devel-
opers’ time, physicians’ time, licensing, and others. The cost
mightdependonthecurrent statusofacategory’sdevelopment
in the EHR. For example, genetic information might have a
higher cost as it is still in its beginning stages of addition to
the EHR compared with other categories. Therefore, it will
be important moving forward to justify costs carefully and
consider that continued development in one area (such as
phenotyping) might assist in some way with others (most
genetic information has phenotypic implications).

There have been other studies highlighting the shortcom-
ings of the EHR and suggesting changes. For example, Liawet al
focus on the accuracy of the data present in the EHR, including
the completeness of the data as one aspect of that metric.79

Dixon et al suggest a general framework for addressing data
quality in the EHRwithout discussing specific areas of the data
content needing attention.80 Finally, Cusack et al focus on

Table 4 Potential solutions to each of the categories of data
content being discussed in the literature as missing from the
EHR or needing revision

Category Solutions

Adverse events • Unified medical record
• Voice recognition
• NLP
• Patient portals

Clinician cognitive
processes

• Voice recognition
• NLP

Data standards creation and
data communication

• Unified medical record
• HL7 development and

standardization
• Voice recognition
• NLP

Genomics • Unified medical record
• Automated laboratory

data transfer

Medication list data capture • Unified medical record
• Voice recognition
• NLP

Patient preferences • Unified medical record
• Voice recognition
• NLP
• Patient portals

Patient-reported data • Unified medical record
• Voice recognition
• NLP
• Patient portals

Phenotyping • Unified medical record
• Voice recognition
• NLP

Abbreviation: NLP, natural language processing.
Note: Some of the proposed solutions are currently implemented in
some EHRs but are not developed enough to solve the issue. Others will
require significant research and further development of the technolo-
gies. Still others might require policy changes.
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general recommendations highlighting data collection with
respect to patient care as needing the main focus.81 Each of
these studies highlights a different aspect of the shortcomings
intheEHR.Our study focusesonspecificdatacontentareas that
need attention for the clinical informatics researcher in the
next-generation EHR. Specifically, we address data reusability
in our study. We, therefore, believe that we have highlighted
another important area for improvement moving forward.

There are a few limitations ofour study; however,we donot
believe these have affected our conclusions. Our literature
search was limited to articles published in 2010 or later,
because we sought categories describing the current state of
the EHR and its shortcomings regarding data use for clinical
informatics research. Surveying older literature might have
identified categories that have already been resolved. Our
broad, preliminary search leading to a focus on prominent
informatics journals indexed in PubMed may have excluded
some articles that may have introduced additional categories.
However, we believe it is unlikely that a popular article would
completely evade the mainstream literature. Finally, although
there may be many other areas of data content that could be
added to the EHR, we believe that the categories that we have
identified focus on the major areas of discussion in the
literature that surround the use of EHR data for clinical infor-
matics research.

Conclusion

Despite 50years ofdevelopment, EHRs still remain inadequate
for many intended tasks, including clinical informatics re-
search. As the next generation of informaticians takes on the
taskofdeveloping thenextgenerationofEHRs,we recommend
that their plans incorporate new data types and structures
guided in part by the eight desirable categories we have
distilled from current clinical informatics literature. Although
creative approaches will be needed to accomplish this, many
promising applications stand ready to exploit these data to
improve the care of individual patients and, through a “learn-
ing health system,”9 the health of humankind.

Clinical Relevance Statement

The reusability of electronic health record data provides
clinical informatics researchers the ability to create inno-
vative applications for clinical applications. The revisions
and additions to the EHR data content that we have
discussed will streamline these innovations, providing fas-
ter development of these applications for use by clinicians.
Additionally, many of the improvements discussed, such as
genetic data contend, would affect the ability of the clin-
ician to store, retrieve, and interpret a patient’s genetic
information in a clinical context.

Multiple Choice Questions

1. Of the following,which solution for data storagewould offer
the most uniform structure for storage and retrieval of the
medical information for both research and clinical practice?

A. Unified medical record
B. Universal medical record number
C. Data communication standards
D. Natural language processing

Correct Answer: The correct answer is A, unified medical
record. A “Universal medical record number” would allow
information to be linked across EHR systems that adhered to
the universal medical record number; however, this would
not ensure data storage or retrieval in each of these systems
would be similar past this relationship.

Data communication standards may provide universal
retrieval of data, but will not ensure universal storage. This
answer, therefore, is also incorrect.

Finally, natural language processing is an information
retrieval methodology that might be able to form a layer
between data entry and retrieval to standardize data flow in
either direction (storing free text as standardized structured
information or retrieving free text as structured informa-
tion). However, the best implementations of this method are
inferential and will always have additional error beyond
error in data entry and retrieval themselves.

2. Which of the following categories of information in the
electronic health record has the greatest impact on natural
language processing in terms of information retrieval?

A. Patient preferences
B. Phenotyping
C. Data standards creation and data communication
D. Genomics

Correct Answer: The correct answer is B, “Phenotyping.”
Natural language processing (NLP) currently plays a major
role in most techniques used to attribute phenotypes to
patients because it allows free text to be searched in addition
to structured data.

Patient preferences are typically stored in structured data
in the electronic health record to allow easy retrieval.
Additionally, there is not much research in this area to use
NLP for retrieving this information from free text.

Data standards creation and data communication is,
somewhat by definition, not intended to use NLP, and is
therefore incorrect. While it might be possible to store and
retrieve information in this manner for data communication
purposes, the use of standards should remove the need for
the use of NLP.

Finally, genomics is currently not often stored in the EHR
through structured data or free text. Additionally, methods
other than NLP are typically used for retrieval of structured
information from the genetic data.
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