Aktuelle Neurologie 2009; 36(2): 71-81
DOI: 10.1055/s-0028-1090174
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Myoklonien

MyoclonusA.  Wolters1 , R.  Benecke1
  • 1Universität Rostock, Neurologie
Further Information

Publication History

Publication Date:
18 February 2009 (online)

Zusammenfassung

Das klinische Symptom Myoklonus ist charakterisiert durch eine plötzliche, unwillkürliche kurz anhaltende Muskelzuckung, die zu einem sichtbaren Bewegungseffekt führt. In der Regel ist der Ausgangspunkt eines Myoklonus zentralmotorisch. Klinische Merkmale und neurophysiologische Befunde helfen, den Ursprung eines Myoklonus auf kortikaler, subkortikaler, retikulärer oder spinaler Ebene näher zu bestimmen. Myoklonien können sich fokal, segmental, multifokal oder generalisiert manifestieren, wobei etwaige zeitliche Ausbreitungsmuster klinisch von diagnostischer Bedeutung sind. Myoklonien treten bei verschiedenen neurologischen Krankheitsbildern fakultativ oder obligat auf, finden sich aber auch im Rahmen primär internistischer Erkrankungen und bei Intoxikationen. Dies weist auf eine heterogene Pathophysiologie von Myoklonien hin, welche bisher nur in Teilaspekten verstanden ist. Myoklonien sind im klinischen Alltag häufiger ein Symptom als eine eigenständige Krankheit. Myoklonien treten bei epileptischen Syndromen auf oder sind zum Teil mit ihnen eng assoziiert. Neben diesen epileptischen Formen lassen sich physiologische, essenzielle und symptomatische Myoklonusformen abgrenzen. Symptomatische Myoklonien sind am häufigsten post-hypoxisch, entzündlich oder metabolisch bedingt, seltener durch Speichererkrankungen oder neurodegenerative Erkrankungen. Die Pharmakotherapie von Myoklonien gestaltet sich oft schwierig, kortikale Myoklonusformen respondieren in der Regel besser als nicht-kortikale Formen. Zum Einsatz kommen v. a. Antikonvulsiva oder Piracetam und 5-Hydroxytryptophan und Levetiracetam bei posthypoxischen Myoklonien. Breit angelegte Therapiestudien zur Behandlung von Myoklonien fehlen bislang. Dieser Übersichtsartikel legt den Schwerpunkt auf Krankheiten mit nicht epileptischen Myoklonien.

Abstract

Myoclonus is characterised by an involuntary sudden, brief and jerky movement caused by an abrupt muscle contraction. Usually, the generator of myoclonus is localised in the central nervous system. Clinical features and neurophysiological findings for different types of myoclonus are important to point out the anatomic level of myoclonus generation, which can be cortical, subcortical, reticular and spinal. Myoclonus can also be grouped by phenomenology with a focal, multifocal, segmental or generalised distribution. The pattern of myoclonic muscle activation yields clinical information on the type of myoclonus. Myoclonus is a symptom of various neurological disorders, but can also occur in metabolic disturbances, storage diseases and toxicities. Hence, with regard to these heterogeneous aetiologies of myoclonus, its pathophysiology is in part speculative and has to be further elucidated. In clinical practice myoclonus is rather a symptom, and disorders that constitute mainly of myoclonus are rare. Myoclonus can be classified into four aetiological categories: physiological, essential, epileptic, and symptomatic. Symptomatic myoclonus is by far the most common form of myoclonus and is caused most often by post-hypoxic encephalopathies, metabolic disturbances, and infectious encephalopathies. Neurodegenerative disorders and storage diseases are less frequent causes of symptomatic myoclonus. Treatment of myoclonus is more effective in cortical than in non-cortical forms of myoclonus and consists mainly of anticonvulsants. The most effective medications used to treat cortical myoclonus are clonazepam, valproic acid, and piracetam. Post-hypoxic myoclonus can be relieved by 5-HTP and levetiracetam. However, evidence of myoclonus treatment is based mainly on case series with only a few controlled studies. This review focuses on non-epileptic myoclonic disorders.

Literatur

  • 1 Caviness J N, Brown P. Myoclonus: current concepts and recent advances.  Lancet Neurol. 2004;  3 598-607
  • 2 Caviness J N, Alving J L, Maraganore D M. et al . The incidence and prevalence of myoclonus in Olmsted County.  Mayo Clin Proc. 1999;  74 565-569
  • 3 Grinker R R, Serota H, Stein S I. Myoclonic epilepsy.  Arch Neurol Psychiatry. 1938;  40 968-980
  • 4 Brown P, Ridding M C, Werhahn K J. et al . Abnormalities of the balance between inhibition and excitation in the motor cortex of patients with cortical myoclonus.  Brain. 1996;  119 309-317
  • 5 Hanajima R, Ugawa Y, Okabe S. et al . Interhemispheric interaction between the hand motor areas in patients with cortical myoclonus.  Clin Neurophysiol. 2001;  112 793-799
  • 6 Hanajima R, Okabe S, Terao Y. et al . Difference in intracortical inhibition of the motor cortex between cortical myoclonus and focal hand dystonia.  Clin Neurophysiol. 2008;  119 1400-1407
  • 7 Li J Y, Cunic D J, Paradiso G. et al . Electrophysiological features of myoclonus-dystonia.  Mov Disord. 2008;  23 312-316
  • 8 Shibasaki H, Hallett M. Electrophysiological studies of myoclonus.  Muscle Nerve. 2005;  31 157-174
  • 9 Roze E, Apartis E, Vidailhet M. et al . Propriospinal myoclonus: utility of magnetic resonance diffusion tensor imaging and fiber tracking.  Mov Disord. 2007;  22 1506-1509
  • 10 Tai K K, Bhidayasiri R, Truong D D. Post-hypoxic animal model of myoclonus.  Parkinsonism Relat Disord. 2007;  13 377-381
  • 11 Tai K K, Truong D D. Brivaracetam is superior to levetiracetam in a rat model of post-hypoxic myoclonus.  J Neural Transm. 2007;  114 1547-1551
  • 12 Naumann M, Bayas A. Myokymie und Neuromyotonie.  Das Neurophysiologie-Labor. 2008;  30 23-28
  • 13 Tassinari C A, Rubboli G, Shibasaki H. Neurophysiology of positive and negative myoclonus.  Electroencephalogr Clin Neurophysiol. 1998;  107 181-195
  • 14 Obeso J, Artieda J, Burleigh A. Clinical aspects of negative myoclonus.  Adv Neurol. 1995;  67 1-7
  • 15 Rubboli G, Tassinari C A. Negative myoclonus. An overview of its clinical features, pathophysiological mechanisms, and management.  Neurophysiol Clin. 2006;  36 337-343
  • 16 Dalmau J, Rosenfeld M R. Paraneoplastic syndromes of the CNS.  Lancet Neurol. 2008;  4 327-340
  • 17 Verdugo R J, Ochoa J L. Abnormal movements in complex regional pain syndrome: assessment of their nature.  Muscle Nerve. 2000;  23 198-205
  • 18 Munts A, Van Rootselaar A F, Van der Meer J N. et al . Clinical and neurophysiological characterization of myoclonus in complex regional pain syndrome.  Mov Disord. 2008;  23 581-587
  • 19 Kahrilas P J, Shi G. Why do we hiccup?.  Gut. 1997;  41 712-713
  • 20 Hallett M, Chadwick D, Adam J. et al . Reticular reflex myoclonus.  J Neurol Neurosurg Psychiatry. 1977;  40 253-264
  • 21 Asmus F, Hjermind L E, Dupont E. et al . Genomic deletion size at the epsilon-sarcoglycan locus determines the clinical phenotype.  Brain. 2007;  130 2736-2745
  • 22 Magarinos-Ascone C M, Regidor I, Martinez-Castrillo J C. et al . Pallidal stimulation relieves myoclonus-dystonia syndrome.  J Neurol Neurosurg Psychiatry. 2005;  76 989-991
  • 23 Kälviäinen R, Khyuppenen J, Koskenkorva P. et al . Clinical picture of EPMI-Unverricht-Lundborg disease.  Epilepsia. 2008;  49 549-556
  • 24 Shibasaki H, Yamashita Y, Neshige R. et al . Pathogenesis of giant somatosensory evoked potentials in progressive myoclonic epilepsy.  Brain. 1985;  108 225-240
  • 25 Salazar G, Valls-Sole J, Marti M J. et al . Postural and action myoclonus in patients with parkinsonian type multiple system atrophy.  Mov Disord. 2000;  15 77-83
  • 26 Okuma Y, Fujishima K, Miwa H. et al . Myoclonic tremulous movements in multiple system atrophy are a form of cortical myoclonus.  Mov Disord. 2005;  20 451-456
  • 27 Rodriguez M E, Artieda J, Zubieta J L. et al . Reflex myoclonus in olivopontocerebellar atrophy.  J Neurol Neurosurgery Psychiatry. 1994;  57 316-319
  • 28 Strafella A, Ashby P, Lang E. Reflex myoclonus in cortical-basal ganglionic degeneration involves a transcortical pathway.  Mov Disord. 1997;  12 360-369
  • 29 Thompson P D, Day B L, Rothwell J C. et al . The myoclonus in corticobasal degeneration: evidence for two forms of cortical reflex myoclonus.  Brain. 1994;  117 1197-1207
  • 30 Grosse P, Kühn A, Cordivari C. et al . Coherence analysis in the myoclonus of corticobasale degeneration.  Mov Disord. 2003;  18 1345-1350
  • 31 Caviness J N, Adler C H, Beach T G. et al . Small amplitude cortical myoclonus in Parkinson's disease: physiology and clinical observations.  Mov Disord. 2002;  17 657-662
  • 32 Caviness J N, Adler C H, Beach T G. et al . Myoclonus in Lewy body disorders.  Adv Neurol. 2002;  89 23-30
  • 33 Benecke R. Myoklonus, myoklonische Syndrome und ihre assoziierten Erkrankungen. In: Ceballos-Baumann A, Conrad B, Hrsg Bewegungsstörungen, 2. Auflage. Stuttgart, New York; Thieme Verlag 2005
  • 34 Koth S, Tirschwell D L. Long-term neurological complications after hypoxic-ischemic encephalopathy.  Semin Neurol. 2006;  26 422-431
  • 35 Glass G A, Ahlskog J E, Matsumoto J Y. Orthostatic myoclonus. A contributor to gait decline in selected elderly.  Neurology. 2007;  68 1826-1830
  • 36 Alvarez M, Caviness J N. Primary progressive myoclonus of aging.  Mov Disord. 2008;  23 2062-2066
  • 37 Chang V C, Frucht S J. Myoclonus.  Curr Treat Options Neurol. 2008;  10 222-229
  • 38 Magaudda A, Gelisse P, Genton P. Antimyoclonic effect of levetiracetam in 13 patients with Unverricht-Lundborg disease: clinical observations.  Epilepsia. 2004;  45 678-681
  • 39 Alonso-Navarro H, Rubio L, Jimenez-Jimenez L. Refractory hiccup: successful treatment with gabapentin.  Clin Neuropharmacol. 2007;  30 186-187
  • 40 Gelisse P, Crespel A, Genton P. Dramatic effect of levetiracetam on negative epileptic myoclonus.  Acta Neurol Scand. 2003;  107 202-203
  • 41 Chi W M, Chua K S, Kong K H. Phenytoin-induced asterixis – uncommon or under-diagnosed.  Brain Inj. 2000;  14 847-850
  • 42 Fahn S. Definition and classification of myoclonus. Advances in Neurology. New York; Raven Press 1986: 1-5

Alexander Wolters

Universität Rostock, Neurologie

Gehlsheimer Str. 20

18147 Rostock

Email: alexander.wolters@med.uni-rostock.de

    >