Synlett 2011(12): 1769-1773  
DOI: 10.1055/s-0030-1260932
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Tetra-ortho-Substituted Biaryls Using Aryltriolborates

Gao-Qiang Li, Yasunori Yamamoto*, Norio Miyaura
Division of Chemical Process Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
Fax: +81(11)7066560; e-Mail: yasuyama@eng.hokudai.ac.jp;
Further Information

Publication History

Received 11 April 2011
Publication Date:
05 July 2011 (online)

Abstract

Tetra-ortho-substituted biaryls were synthesized by cross-coupling between 2,6-disubstituted bromoarenes and aryltriolborates possessing substituents at ortho carbon. The use of a copper(I) halide such as CuCl (20 mol%) with a palladium catalyst was found to be highly effective to give such sterically hindered biaryls in good yields.

    References and Notes

  • For reviews, see:
  • 1a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 1b Suzuki A. In Metal-Catalyzed Cross-Coupling Reactions   Diederich F. Stang PJ. Wiley-VCH; Weinheim: 1998.  p.49-98  
  • 1c Miyaura N. In Advances in Metal-Organic Chemistry   Vol. 6:  Liebeskind LS. JAI Press; Stamford: 1998.  p.187 
  • 1d Miyaura N. In Topics in Current Chemistry   Vol. 219:  Springer; Berlin: 2002.  p.11 
  • 1e Suzuki A. Brown HC. Suzuki Coupling, In Organic Synthesis via Boranes   Vol. 3:  Aldrich Chemical Co.; Milwaukee: 2003. 
  • 1f Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2005.  p.41-124  
  • 2a Hassan J. Svignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev.  2002,  102:  1359 
  • 2b Bringmann G. Gulder T. Gulder TAM. Breuning M. Chem. Rev.  2011,  111:  563 
  • 3a Upender V. Pollart DJ. Liu J. Hobbs PD. Olsen C. Chao W.-R. Bowden B. Crase JL. Thomas DW. Pandey A. Lawson JA. Dawson MI. J. Heterocycl. Chem.  1996,  33:  1371 
  • 3b Hoye TR. Chen M. J. Org. Chem.  1996,  61:  7940 
  • 3c Monovich LG. Huérou YL. Rönn M. Molander GA. J. Am. Chem. Soc.  2000,  122:  52 
  • 4a Dai C. Fu GC. J. Am. Chem. Soc.  2001,  123:  2719 
  • 4b Littke AF. Schwarz L. Fu GC. J. Am. Chem. Soc.  2002,  124:  6343 
  • 5a Yin J. Rainka MP. Zhang XX. Buchwald SL.
    J. Am. Chem. Soc.  2002,  124:  1162 
  • 5b Walker SD. Barder TE. Martinelli JR. Buchwald SL. Angew. Chem. Int. Ed.  2004,  43:  1871 
  • 5c Milne JE. Buchwald SL. J. Am. Chem. Soc.  2004,  126:  13028 
  • 5d Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4685 
  • 6a Hoshi T. Nakazawa T. Saitoh I. Mori A. Suzuki T. Sakai J. Hagiwara H. Org. Lett.  2008,  10:  2063 
  • 6b Hoshi T. Saitoh I. Nakazawa T. Suzuki T. Sakai J. Hagiwara H. J. Org. Chem.  2009,  74:  4013 
  • 7 Tang W. Capacci AD. Wei X. Ki W. White A. Patel ND. Savoie J. Gao JJ. Rodriguez S. Qu B. Haddad N. Lu BZ. Krishnamurthy D. Yee NK. Senanayake CH. Angew. Chem. Int. Ed.  2010,  49:  5879 
  • 8 So CM. Chow WK. Choy PY. Lau CP. Kwong FY. Chem. Eur. J.  2010,  16:  7996 
  • 9 To SC. Kwong FY. Chem. Commun.  2011,  47:  5079 
  • 10 Altenhoff G. Goddard R. Lehmann CW. Glorius F.
    J. Am. Chem. Soc.  2004,  126:  15195 
  • 11 Song C. Ma Y. Chai Q. Ma C. Jiang W. Adrus MB. Tetrahedron  2005,  61:  7438 
  • 12 Organ MG. Çalimsiz S. Sayah M. Hoi KH. Lough AJ. Angew. Chem. Int. Ed.  2009,  48:  2383 
  • 13 Ackermann L. Potukuchi HK. Althammer A. Borm R. Mayer P. Org. Lett.  2010,  12:  1004 
  • 14 Lee D.-H. Jin M.-J. Org. Lett.  2011,  13:  252 
  • 15a Yamamoto Y. Takizawa M. Yu X.-Q. Miyaura N. Angew. Chem. Int. Ed.  2008,  47:  928 
  • 15b Yamamoto Y. Takizawa M. Yu X.-Q. Miyaura N. Heterocycles  2010,  80:  359 
  • 15c Yamamoto Y. Sugai J. Takizawa M. Miyaura N. Org. Synth.  2011,  88:  79 
  • 16 Yu X.-Q. Yamamoto Y. Miyaura N. Chem. Asian J.  2008,  3:  1517 
  • 17a Yu X.-Q. Yamamoto Y. Miyaura N. Synlett  2009,  994 
  • 17b Yu X.-Q. Shirai T. Yamamoto Y. Miyaura N. Chem. Asian J.  2011,  6:  932 
  • 18a Kuvila HG. Reuwer JF. Mangravite JA. J. Am. Chem. Soc.  1964,  86:  2666 
  • 18b Brown RD. Buchanan AS. Humffray AA. Aust. J. Chem.  1965,  18:  1521 
  • 19a Tyrrell E. Brookes P. Synthesis  2003,  469 
  • 19b Molander GA. Biolato B. J. Org. Chem.  2003,  68:  4302 
  • 19c Campeau L.-C. Fagnou K. Chem. Soc. Rev.  2007,  36:  1058 
  • 20a Hodgson PB. Salingue FH. Tetrahedron Lett.  2004,  45:  685 
  • 20b Gros P. Doudouh A. Fort Y. Tetrahedron Lett.  2004,  45:  6239 
  • 20c Jones NA. Antoon JW. Browie AL. Borak JB. Stevens EP. J. Heterocycl. Chem.  2007,  44:  363 
  • 20d Gütz C. Lützen A. Synthesis  2010,  85 
  • 21 Deng JZ. Paone DV. Ginnetti AT. Kurihara H. Dreher SD. Weissman SA. Stauffer SR. Burgey CS. Org. Lett.  2009,  11:  345 
  • 23 Tyrrell E. Brookes P. Synthesis  2003,  469 
22

General Procedure for the Synthesis of ortho -Substituted Biaryls
The aryl bromide (0.5 mmol), aryl triolborate (0.75 mmol), Pd(OAc)2 (5 mol%), BIPHEP (5.5 mol%), and CuCl (0.1 mmol) were placed in a flash under nitrogen atmosphere. Anhyd DMF (5 mL) was added. The mixture was stirred at 80 ˚C for 14 h. After cooling to r.t., the crude mixture was filtered through a plug of Celite and washed with Et2O. The filtrate was then concentrated in vacuo to afford the crude product, which was further purified by chromatography on silica gel with hexanes-EtOAc (99:1 to 10:1).