Drug Res (Stuttg) 2016; 66(01): 23-27
DOI: 10.1055/s-0035-1548764
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Anti-inflammatory Activity of Seeds of Phalaris canariensis

D. Madrigales-Ahuatzi
1   Departamento de Alimentos, Escuela Nacional de Ciencias Biologicas-IPN, Carpio S/N, Mexico D.F.
2   Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingenieria Quimica e Industrias extractivas, Instituto Politecnico Nacional, Nacional S/N, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F.
,
R. M. Perez-Gutierrez
2   Laboratorio de Investigación de Productos Naturales, Escuela Superior de Ingenieria Quimica e Industrias extractivas, Instituto Politecnico Nacional, Nacional S/N, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F.
› Author Affiliations
Further Information

Publication History

received 17 January 2015

accepted 23 February 2015

Publication Date:
01 April 2015 (online)

Abstract

Chloroform extract (ALC) from the seeds of Phalaris canariensis were assayed for antiinflammatory activity by carrageenan-induced oedema, cotton pellets-induced granuloma, histamine-induced inflammation, croton oil-induced oedema, activity of myeloperoxidase (MPO), adjuvant-induced arthritis, quantification of TNFα, IL-1β, PGE2 and LTB4 and nitric oxide (NO) assay. ALC exhibited significant anti-inflammatory activity in different chemically-induced edemas in a dose dependent manner. In the chronic model cotton pellets-induced granuloma showed decreased formation of granuloma tissue. Also caused inhibition of ear inflammation edema and influx of polymorphonuclear cells, as evidence by a decrease in ear thickness and reduced myeloperoxidase activity and inhibit mediators of inflammation as TNFα, IL-1β, PGE2 and LTB4. When RAW 264.7 macrophages were treated with ALC together with LPS a significant inhibition of NO production was detected. These data provide evidence for antiinflamatory effect of P. canariensis by mechanisms that involve a reduced neutrophil influx and decreased production of inflammatory cytokines.

 
  • References

  • 1 FitzGerald GA. Coxibs and cardiovascular disease. N Engl J Med 2004; 351: 1709-1711
  • 2 Matus-Cadiz MA, Hucl P. Rapid and effective germination methods for overcoming seed dormancy in annual Canarygrass. Crop Science 1990; 45: 1696-1703
  • 3 Novas MJ, Jiménez AM, Asuero AO. Determination of antioxidant activity of canary seed infusions by chemiluminescence. J Anal Chem 2004; 59: 75-77 DOI: 10.1023/B:JANC. 0000011672.20745.54.
  • 4 Estrada-Salas PA, Montero-Morán GM, Martínez-Cuevas PP et al. Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. J Agric Food Chem 2014; 62: 427-133 DOI: 10.1021/jf404539y.
  • 5 Perez GRM, Ahuatzi DM, Horcacitas MC et al. Antiobesity and antidiabetic effects of the hexane extract from Phalaris canariensis in high-fat diet-induced obese mice and streptozotocin-induced diabetic mice. Evidence-Based Complemen Altern Med 2014; ID 145901, 13 pages DOI: 10.1155/2014/145901.
  • 6 Lijun W, Curtis LW. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17: 300-312
  • 7 Washiyama M, Sasaki Y, Hosokawa T et al. Anti-inflammatory constituents of Sappan lignum . Biol Pharm Bull 2009; 32: 941-944
  • 8 Gupta M, Mazumdar UK, Sivakumar T et al. Evaluation of anti-inflammatory activity of chloroform Extract of Bryonia laciniosa in experimental animal models. Biol Pharm Bull 2003; 26: 1342-1344
  • 9 Jing-Rong W, Hua Z, Zhi-Hong JG et al. In vivo anti-inflammnatory and analgesic activities of a purified saponin fraction derived from the root of Ilex pubescens . Biol Pharm Bull 2008; 31: 643-650
  • 10 Van Arman CG. Anti-inflammatory drugs. Clin Pharm Ther 1974; 16: 900-904
  • 11 Bradley PP, Priebat DA, Chiristensen RD et al. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 1982; 78: 206-209
  • 12 Arrigoni-Martelli E, Bramm E. Investigations in the influence of cyclophosphamide gold odium thiomalate and D-penicillamine on nystatin oedema and adjuvant arthritis. Agents Actions 1975; 5: 264-267
  • 13 Bogdan C, Paik J, Vodovotz Y et al. Contrasting mechanism for suppression of macrophage cytokine release by transforming growth factor-β and interleukin-10. J Biol Chem 1992; 267: 23301-23308
  • 14 Ding A, Nathan CF, Orayear J et al. Macrophage deactivating factor and transforming growth factors β1, β2 and β3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-γ. J Immunol 1990; 145: 940-944
  • 15 Dunne AMW. Pathophysiology: Concepts of Altered Health States with Contributors. ed. Porth CM. Lippincott; Philadelphia: 1990: 165-176
  • 16 Recio MC, Giner RM, Manez S et al. Structural requirements for the anti-inflammatory activity of natural triterpenoids. Planta Med 1995; 61: 182-185
  • 17 Rotelli AE, Guardia T, Juarez AO et al. Comparative study of flavonoids in experimental models of inflammation. Pharmacol Res 2003; 48: 601-606
  • 18 Luster ML, Dean JH, Boorman GA. A cell mediated immunity and its application in toxicology. Environ Health Perspect 1982; 43: 31-36
  • 19 Aggarwal B, Gutterman J. The Human Cytokines: Handbook of Basic and Clinical Research. Published by Malden, MA, U.S.A.: Blackwell Publishers; 1992
  • 20 Balkwill F. Tumor necrosis factor or tumor promoting factor?. Cytokine Growth Factor Rev 2002; 13: 135-141
  • 21 Bakhle YS, Botting RM. Cyclooxygenase-2 and its regulation in inflammation. Mediators Inflamm 1996; 5: 305-323