CC BY 4.0 · SynOpen 2024; 08(02): 116-124
DOI: 10.1055/s-0043-1763748
review
Virtual Collection Electrochemical Organic Synthesis

Recent Advances and Challenges in Electrocatalytic Carboxylation of CO2

Jie Wang
a   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Zhen-Feng Wei
a   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Yun-Xia Luo
a   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Chang-Hai Lu
a   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Ren-Jie Song
a   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
b   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China
› Institutsangaben
We thank the National Natural Science Foundation of China (No. 52270039) and State Key Laboratory of Chemo/Biosensing and Chemometrics­ (SKLCBSC; 20220384) for financial support.


Abstract

The electrochemical fixation of carbon dioxide onto organic matter has emerged as a promising approach in recent years. By combining the unique features of electrochemistry with the goal of carbon dioxide fixation, researchers aim to develop new strategies that can contribute to a more sustainable and environmentally friendly synthesis of organic compounds. One advantage of electrochemical methods is their ability to provide both electrons and energy for chemical transformations. This allows for the direct conversion of carbon dioxide into valuable organic products, without the need for transition metal catalysts or harsh reaction conditions. As a result, electrochemical carbon dioxide fixation offers the potential for milder and more efficient processes compared to traditional methods. Scientists have made noteworthy progress in exploring different strategies for the fixation of carbon dioxide under electrochemical conditions. These strategies involve the activation of various types of chemical bonds, including C(sp2)–C(sp2), C(sp2)–H, C–X (X = halogen), and C(sp3)–X (X = S, C, O, N). This review aims to provide an overview of the current state of research on electrochemical carbon dioxide fixation into organic matter. It will discuss the different strategies employed, the key findings, and the challenges that remain to be addressed. By highlighting the recent advancements in this field, this review hopes to inspire further exploration and innovation in the area of electrochemical synthesis for carbon dioxide fixation.

1 Introduction

2 Electrocatalytic Monocarboxylation of CO2

2.1 Monocarboxylation of C(sp2)–C(sp2)

2.2 Monocarboxylation of C(sp2)–H

2.3 Monocarboxylation of C–X (X = Cl, Br, I)

2.4 Monocarboxylation of C(sp3)–X (X = S, C, O, N)

3 Electrocatalytic Dicarboxylation of CO2

4 Electrocatalytic Esterification of CO2

5 Conclusions



Publikationsverlauf

Eingereicht: 05. Januar 2024

Angenommen nach Revision: 26. Februar 2024

Artikel online veröffentlicht:
22. April 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 2 Ran C.-K, Liao L.-L, Gao T.-Y, Gui Y.-Y, Yu D.-G. Curr. Opin. Green Sustainable Chem. 2021; 32: 100525
    • 3a Wu L.-X, Zhao Y.-G, Guan Y.-B, Wang H, Lan Y.-C, Wang H, Lu J.-X. RSC Adv. 2019; 9: 32628
    • 3b Ang NW. J, Oliveira JC. A, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12842
    • 3c Alkayal A, Tabas V, Montanaro S, Wright A, Malkov AV, Buckley BR. J. Am. Chem. Soc. 2020; 142: 1780
    • 3d Sheta AM, Mashaly MA, Said SB, Elmorsy SS, Malkov AV, Buckley BR. Chem. Sci. 2020; 11: 9109
    • 3e Chen R, Tian K, He D, Gao T, Yang G, Xu J, Chen H, Wang D, Zhang Y. ACS Appl. Energy Mater. 2020; 3: 5813
    • 3f Zhang W, Lin S. J. Am. Chem. Soc. 2020; 142: 20661
  • 4 Sheta AM, Alkayal A, Mashaly MA, Said PD. S. B, Elmorsy PD. S. S, Malkov PD. A. V, Buckley DB. R. Angew. Chem. Int. Ed. 2021; 60: 21832
  • 5 Wang L.-L, Liu X.-F, Wang H, Tao L, Huang J, Ren W.-M, Lu X.-B, Zhang W.-Z. Synthesis 2023; 55: 2951
  • 6 Mangaonkar SR, Hayashi H, Takano H, Kanna W, Maeda S, Mita T. ACS Catal. 2023; 13: 2482
    • 7a Lauridsen JM. V, Cho SY, Bae HY, Lee J.-W. Organometallics 2020; 39: 1652
    • 7b León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
    • 7c Liu Y, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 11212
    • 7d Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
    • 7e Tang S, Zhao X, Yang L, Li B, Wang B. Angew. Chem. Int. Ed. 2022; 61: e202212975
  • 8 Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Angew. Chem. Int. Ed. 2023; 62: e202214710
  • 9 Rawat VK, Hayashi H, Katsuyama H, Mangaonkar SR, Mita T. Org. Lett. 2023; 25: 4231
  • 10 Wawzonek S, Wearring D. J. Am. Chem. Soc. 1959; 81: 2067
  • 11 Sun G, Yu P, Zhang W, Zhang W, Wang Y, Liao L, Zhang Z, Li L, Lu Z, Yu D, Lin S. Nature 2023; 615: 67
  • 12 Wang P.-Z, Xiao W.-J, Chen J.-R. Angew. Chem. Int. Ed. 2023; 62: e202302227
    • 13a Kamekawa H, Senboku H, Tokuda M. Tetrahedron Lett. 1998; 39: 1591
    • 13b Niu D, Xiao L, Zhang A, Zang G, Tan Q, Lu J. Tetrahedron 2008; 64: 10517
    • 13c Yang H, Zhang H, Wu Y, Fan L, Chai X, Zhang Q, Liu J, He C. ChemSusChem 2018; 11: 3905
    • 13d Bazzi S, Le DG, Schulz E, Gosmini C, Mellah M. Org. Biomol. Chem. 2019; 17: 8546
  • 14 Corbin N, Yang D, Lazouski N, Steinberg K, Manthiram K. Chem. Sci. 2021; 12: 12365
  • 15 Sun G.-Q, Zhang W, Liao L.-L, Li L, Nie Z.-H, Wu J.-G, Zhang Z, Yu D.-G. Nat. Commun. 2021; 12: 7086
  • 16 Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202210201
    • 17a Kim H, Kim H, Lambert TH, Lin S. J. Am. Chem. Soc. 2020; 142: 2087
    • 17b Wang B, Peng P, Ma W, Liu Z, Huang C, Cao Y, Hu P, Qi X, Lu Q. J. Am. Chem. Soc. 2021; 143: 12985
    • 17c Cowper NG. W, Chernowsky CP, Williams OP, Wickens ZK. J. Am. Chem. Soc. 2020; 142: 2093
    • 17d Xie S, Gao X, Wu H, Zhou F, Zhou J. Org. Lett. 2020; 22: 8424
    • 17e Isse AA, Gennaro A. J. Electrochem. Soc. 2002; 149: D113
    • 17f Senboku H, Nagakura K, Fukuhara T, Hara S. Tetrahedron 2015; 71: 3850
    • 17g Medvedev JJ, Medvedeva XV, Li F, Zienchuk TA, Klinkova A. ACS Sustainable Chem. Eng. 2019; 7: 19631
  • 18 Mondal S, Sarkar S, Wang JW, Meanwell MW. Green Chem. 2023; 25: 9075
  • 19 Zhong J.-S, Yang Z.-X, Ding C.-L, Huang Y.-F, Zhao Y, Yan H, Ye K.-Y. J. Org. Chem. 2021; 86: 16162
  • 20 Senboku H, Minemura Y, Suzuki Y, Matsuno H, Takakuwa M. J. Org. Chem. 2021; 86: 16077
  • 21 Yang Z.-X, Lai L, Chen J, Yan H, Ye K.-Y, Chen F.-E. Chin. Chem. Lett. 2023; 34: 107956
  • 22 Kuzmin J, Röckl JL, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Angew. Chem. Int. Ed. 2023; 62: e202304272
    • 23a Liu X.-F, Zhang K, Wang L.-L, Wang H, Huang J, Zhang X.-T, Lu X.-B, Zhang W.-Z. J. Org. Chem. 2023; 88: 5212
    • 23b Jiang Y.-X, Chen L, Ran C.-K, Song L, Zhang W, Liao L.-L, Yu D.-G. ChemSusChem 2020; 13: 6312
  • 24 Jiang Y, Chen L, Ran C, Song L, Zhang W, Liao L, Yu D. ChemSusChem. 2020; 13: 6312
  • 25 Liu X, Zhang K, Wang L, Wang H, Huang J, Zhang X, Lu X, Zhang W. J. Org. Chem. 2022; 88 (08) 5212-5219
  • 26 Zhao R, Lin Z, Maksso I, Struwe J, Ackermann L. ChemElectroChem 2022; 9: e202200989
  • 27 Jiao KJ, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei T.-S. Org. Chem. Front. 2018; 5: 2244
  • 28 Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Angew. Chem. Int. Ed. 2022; 61: e202207746
  • 29 Yang G, Wang Y, Qiu Y. Chem. Eur. J. 2023; 29: e202300959
  • 30 Zhang K, Liu X.-F, Zhang W.-Z, Ren W.-M, Lu X.-B. Org. Lett. 2022; 24: 3565
    • 31a Luo J, Larrosa I. ChemSusChem 2017; 10: 3317
    • 31b Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
    • 31c Chen Y.-G, Xu X.-T, Zhang K, Li Y.-Q, Zhang L.-P, Fang P, Mei T.-S. Synthesis 2018; 50: 35
    • 31d Yeung CS. Angew. Chem. Int. Ed. 2019; 58: 5492
    • 31e Zhang L, Li Z, Takimoto M, Hou Z. Chem. Rec. 2020; 20: 494
    • 31f Yi Y, Hang W, Xi C. Chin. J. Org. Chem. 2021; 41: 80
    • 31g Bertuzzi G, Cerveri A, Lombardi L, Bandini M. Chin. J. Chem. 2021; 39: 3116
  • 32 Labbé E, Duñach E, Périchon J. J. Organomet. Chem. 1988; 353: C51
    • 33a Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JF. J, Freire CS. R, Silvestre AJ. D. Polym. Chem. 2014; 5: 3119
    • 33b Zhang X, Fevre M, Jones GO, Waymouth RM. Chem. Rev. 2018; 118: 839
    • 33c Wang G, Jiang M, Zhang Q, Wang R, Qu X, Zhou G. Prog. Chem. 2018; 30: 719
    • 34a Matthessen R, Fransaer J, Binnemans K, De Vos DE. RSC Adv. 2013; 3: 4634
    • 34b Matthessen R, Fransaer J, Binnemans K, De Vos DE. ChemElectroChem 2015; 2: 73
    • 34c Kim Y, Park GD, Balamurugan M, Seo J, Min BK, Nam KT. Adv. Sci. 2020; 7: 1900137
    • 35a Yuan G.-Q, Jiang H.-F, Lin C. Tetrahedron 2008; 64: 5866
    • 35b Li C, Yuan G, Jiang H. Chin. J. Chem. 2010; 28: 1685
    • 35c Li C.-H, Yuan G.-Q, Qi C.-R, Jiang H.-F. Tetrahedron 2013; 69: 3135
    • 35d Katayama A, Senboku H, Hara S. Tetrahedron 2016; 72: 4626
    • 36a Yuan G, Li L, Jiang H, Qi C, Xie F. Chin. J. Chem. 2010; 28: 1983
    • 36b You Y, Kanna W, Takano H, Hayashi H, Maeda S, Mita T. J. Am. Chem. Soc. 2022; 144: 3685
  • 37 Liao L.-L, Wang Z.-H, Cao K.-G, Sun G.-Q, Zhang W, Ran C.-K, Li Y, Chen L, Cao G.-M, Yu D.-G. J. Am. Chem. Soc. 2022; 144: 2062
  • 38 Zhang W, Liao L.-L, Li L, Liu Y, Dai LF, Sun G.-Q, Ran C.-K, Ye J.-H, Lan Y, Yu D.-G. Angew. Chem. Int. Ed. 2023; 62: e202301892
  • 39 Xiong T.-K, Zhou X.-Q, Zhang M, Tang HT, Pan Y.-M, Liang Y. Green Chem. 2021; 23: 4328
  • 40 Pan Y.-Z, Xia Q, Zhu Z.-X, Wang Y.-Z, Liang Y, Wang H.-X, Tang H.-T, Pan Y.-M. Org. Lett. 2022; 24: 8239
  • 41 Yeo JB, Jang JH, Kim JE, Lee MY, Jo YI, Kim HJ, Nam KT. J. Phys. Chem. C 2022; 126: 19200