Seminars in Neurosurgery 2000; 11(1): 71-82
DOI: 10.1055/s-2000-11559
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

VASCULAR APPLICATIONS OF THE INTRAOPERATIVE MAGNETIC RESONANCE IMAGING UNIT

Claudia Martin, Philip E. Stieg
  • Section of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
Further Information

Publication History

Publication Date:
31 December 2000 (online)

 

ABSTRACT

The 0.5-T intraoperative magnetic resonance imaging (MRI) (General Electric) allows a surgeon to operate under direct MR guidance. We present the first application to neurovascular surgery through a series of 11 patients with vascular lesions, including 2 arteriovenous malformations (AVM), 8 cavernous malformations, and a pineal region cyst in which drainage required navigation through the venous structures in this area. Operating in this system provided accurate localization of each lesion, which in turn allowed the size of the craniotomy and the dural opening to be minimized. The optimal trajectory of approach was chosen and executed under real-time image guidance. Intraoperative MRA in the AVM and pineal cyst cases further defined the vascular anatomy. Confirmation of complete resection was obtained through imaging prior to closing. The intraoperative MRI provides a minimally invasive approach for neurovascular surgery. Advantages include real-time localization of vascular lesions, increased safety of approach through the choice of the optimal trajectory, definitive intraoperative identification of vascular structures and their relationship to surgical anatomy, verification of complete resection, and monitoring of intraoperative hemorrhage.

REFERENCES

  • 1 Horsley V, Clarke R H. The structure and function of the cerebellum examined by a new method.  Brain . 1908;  45-124
  • 2 Spiegel E A, Wycis H T. Stereotactic apparatus for operations on the human brain.  Science . 1947;  106 349-350
  • 3 Leksell L A. Stereotactic apparatus for intracerebral surgery.  Acta Chir Scand . 1949;  99 229-233
  • 4 Riechert T, Mundinger F. Beschreibung und anwendung eines Zielgeraetes fuer stereotaktische Hirnoperationen.  Acta Neurochir . 1955;  3 308-337
  • 5 Riechert T, Wolff M. Ueber ein neues zielgeraet zur intrakraniellen elektrischen abteilung und ausshaltung.  Arch Psychiat Z Neurol . 1951;  186 225-230
  • 6 Talairach J, David M, Tournous P, Corredor H, Krasina T. Recherches sur la coagulation therapeutique des structures sous corticales chez l'homme.  Rev Neurol . 1949;  81 4-24
  • 7 Apuzzo M LJ, Sabshin J K. Computed tomographic guidance stereotaxis in the management of intracranial mass lesions.  Neurosurgery . 1983;  12 277-285
  • 8 Brown R A. A computerized tomography-computer graphics approach to stereotactic localization.  J Neurosurg . 1979;  50 715
  • 9 Couldwell W T, Apuzzo M LJ. Initial experience related to the use of the Cosman-Roberts-Wells stereotactic instrument.  J Neurosurg . 1990;  72 145-148
  • 10 Leksell L, Leksell D, Schwebe J. Stereotaxis and nuclear magnetic resonance.  J Neurol Neurosurg Psychiat . 1985;  48 14-18
  • 11 Lufkin R, Teresi L, Chiu L, Hanafee W. A technique for MR-guided needle placement.  Am J Radiol . 1988;  151 193-196
  • 12 Mundinger F, Hoefer T. Computer assisted stereotactic brain operations by means including computerized axial tomography.  Appl Neurophysiol . 1979;  41 169-182
  • 13 Apuzzo M LJ, Weinberg R A. Architectural and functional design of advanced neurosurgical operating environments.  Neurosurgery . 1993;  33 663-673
  • 14 Barnett G H, Kormos D W, Steiner C P. Use of a frameless, armless stereotactic wand for brain tumor localization with two dimensional and three dimensional neuroimaging.  Neurosurgery . 1993;  33 674-678
  • 15 Barnett G H, Kormos D W, Steiner C P, Weisenberger J. Intraoperative localization using an armless, frameless stereotactic wand.  J Neurosurg . 1993;  78 510-514
  • 16 Bucholz R D, Smith K R, Henderson J. Intraoperative localization using a three dimensional optical digitizer.  SPIE . 1993;  1894 312-322
  • 17 Golfinos J G, Fitzpatrick B C, Lawrence R S, Spetzler R F. Clinical use of a frameless stereotactic arm: Results of 325 cases.  J Neurosurg . 1995;  83 197-205
  • 18 Grimson E, Lozano-Perez T, Wells W. Automated registration for enhanced reality visualization in surgery. Proceedings of the First International Symposium on Medical Robotics and Computer Aided Surgery. Pittsburgh, PA 1994
  • 19 Heilbrun M P, Roberts T S, Apuzzo M LJ. Preliminary experience with Brown-Roberts-Wells (BRW) computerized tomography stereotaxic guidance system.  Neurosurgery . 1983;  59 217-222
  • 20 Kelly P J, Kall B A, Goerss S, Earnest F. Present and future developments of stereotactic technology.  Appl Neurophysiol . 1985;  48 1-6
  • 21 Maciunas R J, Galloway R L, Fitzpatrick J M. A universal system for interactive image-directed neurosurgery.  Stereotact Funct Neurosurg . 1992;  58 108-113
  • 22 Roberts D W, Strohbehn J W, Hatch J F, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope.  J Neurosurg . 1986;  65 545-549
  • 23 Smith K R, Frank K J, Bucholz R D. The Neurostation-A highly accurate, minimally invasive solution to frameless stereotactic neurosurgery.  Comput Med Imag Graphics . 1994;  18 247-256
  • 24 Tan K K, Grzeszczuk M S, Levin D N, Dohrman G J. A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration.  J Neurosurg . 1993;  79
  • 25 Watanabe E, Mayanagi Y, Yosugi Y. Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm.  Neurosurgery . 1991;  28 792-800
  • 26 Watanabe E, Watanabe T, Manaka S. Three dimensional digitizer (neuronavigator): New equipment of computed tomography-guided stereotactic surgery.  Surg Neurol . 1987;  27 543-547
  • 27 Zinreich J S, Tebo S A, Long D M. Frameless stereotactic integration of CT imaging data: Accuracy and initial applications.  Radiology . 1993;  188 735-743
  • 28 Galloway R J, Maciunas R J, Latimer J W. The accuracies of four stereotactic frame systems: An independent assessment.  Biomed Instrum Technol . 1991;  25 457-460
  • 29 Kondziolka D, Dempsey P K, Lunsford D, Kestle J RW, Dolan E J, Kanal E, Tasker R R. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination.  Neurosurgery . 1992;  30 402-407
  • 30 Maciunas R J. Beyond stereotaxy: Extreme levels of application accuracy are provided by implantable fiducial markers for interactive image-guided neurosurgery. In: Maciunas RJ, ed. Interactive Image Guided Neurosurgery Park Ridge, IL: American Association of Neurosurgeons, 1993: 259-270
  • 31 Roberts D, Hartov A, Kennedy F, Miga M, Paulsen K. Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases.  Neurosurgery . 1998;  43 749-760
  • 32 Alexander E, Moriaty T M, Kikinis R, Jolesz F A. Innovations in minimalism: Intraoperative MR.  Clin Neurosurg . 1996;  43
  • 33 Black P M, Alexander III E, Moriarty T. Development and implementation of Intraoperative magnetic resonance imaging and its neurosurgical applications.  Neurosurgery . 1997;  41 832-845
  • 34 Gronemeyer D HW, Seibel R MM, Melzer A, Schmidt A, Deli M, Friebe M, Busch M. Future of advanced guidance techniques by interventional CT and MRI.  Minim Invas Ther . 1995;  4 251-259
  • 35 Jolesz F A, Blumenfeld S M. Interventional use of magnetic resonance imaging.  Magnet Reson Q . 1994;  10 85-96
  • 36 Jolesz F A, Stern F. The operating room of the future. Report of the National Cancer Institute Workshop. Imaging Guided Stereotactic Tumor Diagnosis and Treatment.  Invest Radiol . 1992;  27 326-328
  • 37 Moriarty T M, Kikinis R, Jolesz F A, Black P M, Alexander III E. Magnetic resonance imaging therapy. Intraoperative MR imaging.  Neurosurg Clin North Am Clinical Frontiers of Interactive Image Guided Neurosurgery . 1996;  7 323-331
  • 38 Schenk J F, Jolesz F A, Roemer P M, Cline H E, Lorensen W E, Vosburgh K G, Kikinis R. Superconducting open-configuration MR imaging system for image guided therapy.  Radiology . 1995;  805-814
  • 39 Berger M S. Ultrasound guided stereotaxic biopsy using a new apparatus.  J Neurosurg . 1986;  550-554
  • 40 Lunsford L D. A dedicated CT system for the stereotactic operating room.  Appl Neurophysiol . 1982;  45 379
  • 41 Lunsford L D, Albright L. Intraoperative imaging with a therapeutic computed tomographic scanner.  Neurosurgery . 1984;  15 559-561
  • 42 Steinmeier R, Fahlbusch R, Ganslandt O. Intraoperative magnetic resonance imaging with the Magnetom open scanner: Concepts, neurosurgical indications, and procedures: A preliminary report.  Neurosurgery . 1998;  43 739-748
  • 43 Nuata H JW. Error assessment during ``image guided'' and ``image interactive'' stereotactic surgery.  Comput Med Imag Graphics . 1993;  18 279-2871
    >