Am J Perinatol 2002; 19(1): 023-030
DOI: 10.1055/s-2002-20171
ORIGINAL ARTICLE

Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Calcium and Phosphorus Balance of Extremely Preterm Infants with Estradiol and Progesterone Replacement

Andreas Trotter1 , Ludwig Maier2 , Frank Pohlandt1
  • 1Section of Neonatology and Pediatric Critical Care Medicine, Children's Hospital, Ulm, Germany
  • 2Department of Clinical Pharmacy, University of Ulm, Germany
Further Information

Publication History

Publication Date:
18 February 2002 (online)

ABSTRACT

Infants born extremely prematurely are deprived of the placental supply of estradiol (E2) and progesterone (Prog) at an earlier developmental stage compared to an infant born at term. We hypothesized that the retention of Ca (calcium) and P (phosphorus) would be improved by an E2 and Prog replacement. Twenty female infants with a mean gestational age of 26.6 weeks (±1.5 SD) and a mean birth weight of 744 g (±156) were enrolled in a randomized controlled pilot study. One group received an E2 and Prog replacement to maintain intrauterine plasma concentrations of E2 and Prog and the other group served as control. When intake of formula was at least 100 mL/kg/d, a 3-day Ca and P balance study was performed. Ca and P intake was increased individually until both elements were excreted in the urine. The mean Ca and P retention was 4.21 (±1.75) mMol/kg/d (58% of intake) and 2.66 (±1.01) mMol/kg/d (80%) in the replaced group and 3.39 (±1.69) mMol/kg/d (56%) and 2.03 (±0.79) mMol/kg/d (71%) in the control group, respectively. In this pilot study the retention of Ca and P was not improved by an E2 and Prog replacement.

REFERENCES

  • 1 Schanler R J, Abrams S A, Garza C. Mineral balance studies in very low birth weight infants fed human milk.  J Pediatr . 1988;  113 230-238
  • 2 Atkinson S A, Radde I C, Anderson G H. Macromineral balances in premature infants fed their own mothers' milk or formula.  J Pediatr . 1983;  102 99-106
  • 3 Shaw J C. Evidence for defective skeletal mineralization in low-birthweight infants: the absorption of calcium and fat.  Pediatrics . 1976;  57 16-25
  • 4 Schanler R J, Garza C, Smith E O. Fortified mothers' milk for very low birth weight infants: results of macromineral balance studies.  J Pediatr . 1985;  107 767-774
  • 5 Senterre J, Salle B. Calcium and phosphorus economy of the preterm infant and its interaction with vitamin D and its metabolites.  Acta Paediatr Scand Suppl . 1982;  296 85-92
  • 6 Salle B, Senterre J, Putet G, Rigo J. Effects of calcium and phosphorus supplementation on calcium retention and fat absorption in preterm infants fed pooled human milk.  J Pediatr Gastroenterol Nutr . 1986;  5 638-642
  • 7 Lapillonne A A, Glorieux F H, Salle B L. Mineral balance and whole body bone mineral content in very lowbirth-weight infants.  Acta Paediatr Suppl . 1994;  405 117-122
  • 8 Greer F, Tsang R. Calcium, phosphorus, magnesium, and vitamin D requirements for the preterm infant. In: Tsang R, ed. Vitamin and Mineral Requirements in Preterm Infants New York: Marcel Dekker 1985: 99-136
  • 9 Cooke R, Hollis B, Conner C, Watson D, Werkman S, Chesney R. Vitamin D and mineral metabolism in the very low birth weight infant receiving 400 IU of vitamin D.  J Pediatr . 1990;  116 423-428
  • 10 Lyon A J, McIntosh N. Calcium and phosphorus balance in extremely low birthweight infants in the first six weeks of life.  Arch Dis Child . 1984;  59 1145-1150
  • 11 Koo W W, Tsang R C. Mineral requirements of low-birth-weight infants.  J Am Coll Nutr . 1991;  10 474-486
  • 12 Koo W, Tsang R. Calcium, magnesium, phosphorus, and vitamin D. In: Tsang R, et al, eds. Nutritional Needs of the Preterm Infant Baltimore: Williams & Wilkins 1993: 135-155
  • 13 Hercz P. Quantitative changes in steroid and peptide hormones in the maternal-fetoplacental system between the 28th-40th weeks of pregnancy.  Acta Med Hung . 1985;  42 29-39
  • 14 Hercz P, Ungar L, Siklos P, Farquharson R G. Unconjugated 17 beta-oestradiol and oestriol in maternal serum and in cord vein and artery blood at term and preterm delivery.  Eur J Obstet Gynecol Reprod Biol . 1988;  27 7-12
  • 15 Griscom N T, Craig J N, Neuhauser E B. Systemic bone disease developing in small premature infants.  Pediatrics . 1971;  48 883-895
  • 16 James J R, Congdon P J, Truscott J, Horsman A, Arthur R. Osteopenia of prematurity.  Arch Dis Child . 1986;  61 871-876
  • 17 Trotter A, Maier L, Grill H J, Kohn T, Heckmann M, Pohlandt F. Effects of postnatal estradiol and progesterone replacement in extremely preterm infants.  J Clin Endocrinol Metabol . 1999;  84 4531-4535
  • 18 Lindsay R. Sex steroids in the pathogenesis and prevention of osteoporosis. In: Melton LJ, Riggs L, eds. Osteoporosis: Etiology, Diagnosis and Management New York: Raven Press 1988: 333-358
  • 19 Civitelli R, Agnusdei D, Nardi P, Zacchei F, Avioli L V, Gennari C. Effects of one-year treatment with estrogens on bone mass, intestinal calcium absorption, and 25-hydroxyvitamin D-1 alpha-hydroxylase reserve in postmenopausal osteoporosis.  Calcif Tissue Int . 1988;  42 77-86
  • 20 Hasling C, Charles P, Jensen F T, Mosekilde L. A comparison of the effects of oestrogen/progestogen, high-dose oral calcium, intermittent cyclic etidronate and an ADFR regime on calcium kinetics and bone mass in postmenopausal women with spinal osteoporosis.  Osteoporos Int . 1994;  4 191-203
  • 21 Krantz K, Atkinson J. Pediatric and adolescent gynecology: I. Fundamental considerations. Gross anatomy.  Ann N Y Acad Sci . 1967;  142 551-575
  • 22 Pohlandt F. Prevention of postnatal bone demineralization in very low-birth-weight infants by individually monitored supplementation with calcium and phosphorus.  Pediatr Res . 1994;  35 125-129
  • 23 Herrman A. Analytische Methoden für die Bestimmung der einzelnen Elemente. In: Herrman A, ed. Praktikum der Gesteinsanalyse, chemisch-instrumentelle Methoden zur Bestimmung der Hauptkomponenten Berlin: Springer 1975: 76-183
  • 24 Trotter A, Stoll M, Leititis J U, Blatter A, Pohlandt F. Circadian variations of urinary electrolyte concentrations in preterm and term infants.  J Pediatr . 1996;  128 253-256
  • 25 Kenny F M, Angsusingha K, Stinson D, Hotchkiss J. Unconjugated estrogens in the perinatal period.  Pediatr Res . 1973;  7 826-831
  • 26 Tayama C, Ichimaru S, Ito M, Nakayana M, Maeyama M, Miyakawa I. Unconjugated estradiol, estriol and total estriol in maternal peripheral vein, cord vein, and cord artery serum at delivery in pregnancies with intrauterine growth retardation.  Endocrinol Jpn . 1983;  30 155-162
  • 27 Herruzo A J, Mozas J, Alarcon J L. Sex differences in serum hormone levels in umbilical vein blood.  Int J Gynaecol Obstet . 1993;  41 37-41
  • 28 Scommegna A, Burd L, Bieniarz J. Progesterone and pregnenolone sulfate in pregnancy plasma.  Am J Obstet Gynecol . 1972;  113 60-65
  • 29 Sippell W G, Becker H, Versmold H T, Bidlingmaier F, Knorr D. Longitudinal studies of plasma aldosterone, corticosterone, deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone determined simultaneously in mother and child at birth and during the early neonatal period: I. Spontaneous delivery.  J Clin Endocrinol Metabol . 1978;  46 971-985
  • 30 Trotter A, Maier L, Grill H J, Wudy S A, Pohlandt F. 17β-estradiol and progesterone supplementation in extremely low-birth-weight infants.  Pediatr Res . 1999;  45 489-493
  • 31 Colin E M, Van Den Bemd J G, Van Aken M. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat.  J Bone Miner Res . 1999;  14 57-64
  • 32 Arjmandi B H, Salih M A, Herbert D C, Sims S H, Kalu D N. Evidence for estrogen receptor-linked calcium transport in the intestine.  Bone Miner . 1993;  21 63-74
  • 33 Arjmandi B H, Hollis B W, Kalu D N. In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats.  Bone Miner . 1994;  26 181-189
  • 34 Oursler M J, Landers J P, Riggs B L, Spelsberg T C. Oestrogen effects on osteoblasts and osteoclasts.  Ann Med . 1993;  25 361-371
  • 35 Prior J C. Progesterone as a bone-trophic hormone.  Endocr Rev . 1990;  11 386-398
  • 36 Slootweg M C, Ederveen A G, Schot L P, Schoonen W G, Kloosterboer H J. Oestrogen and progestogen synergistically stimulate human and rat osteoblast proliferation.  J Endocrinol . 1992;  133 R5-8
  • 37 Adami S, Gatti D, Bertoldo F. The effects of menopause and estrogen replacement therapy on the renal handling of calcium.  Osteoporos Int . 1992;  2 180-185
  • 38 Jones L, Bern H. Long-term effects of neonatal treatment with progesterone, alone and in combination with estrogen, on the mammary gland and reproductive tract of female BALB/cfC3H mice.  Cancer Res . 1977;  37 67-75
  • 39 Tapanainen J, Penttinen J, Huhtaniemi I. Effect of progesterone treatment on the development and function of neonatal rat adrenals and testes.  Biol Neonate . 1979;  36 290-297
  • 40 Warner M, Yau L, Rosen J. Long term effects of perinatal injection of estrogen and progesterone on the morphological and biochemical development of the mammary gland.  Endocrinology . 1980;  106 823-832
  • 41 Levine S, Mullins R. Estrogen administered neonatally affects sexual behavior in male and female rats.  Science . 1964;  144 185-187
  • 42 Herbst A, Ulfelder H, Poskanzer D. Adenocarcinoma of the vagina: Association of maternal stilbestrol therapy with tumor appearance in young women.  N Engl J Med . 1971;  284 878-881
  • 43 Trotter A, Pohlandt F. The replacement of oestradiol and progesterone in very premature infants.  Ann Med . 2000;  32 608-614
  • 44 Trotter A, Bokelmann B, Sorgo W. Follow-up examination at the age of 15 months of extremely preterm infants after postnatal estradiol and progesterone replacement.  J Clin Endocrinol Metabol . 2001;  86 601-603
    >