Z Gastroenterol 2019; 57(07): 883-888
DOI: 10.1055/a-0848-9193
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Mikrobielle Einflüsse in der Tumorentwicklung und Tumortherapie

Microbial regulation of tumor development and responses to tumor therapy
Sebastian Zeissig
1   Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden
2   Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden
› Author Affiliations
Further Information

Publication History

26 October 2018

30 January 2019

Publication Date:
09 July 2019 (online)

Zusammenfassung

Viren und Bakterien spielen eine zentrale Rolle in der Entstehung von Malignomen im Gastrointestinaltrakt. So konnte bereits vor Dekaden eine Assoziation von Helicobacter pylori und dem Magenkarzinom sowie MALT-Lymphomen, und von Hepatitis-B- und C-Virus-Infektionen und dem hepatozellulären Karzinom nachgewiesen werden. Faszinierende Daten der letzten Jahre deuten jedoch einen weit über diese Zusammenhänge hinausgehenden Beitrag mikrobieller Erreger zur Karzinogenese im Gastrointestinaltrakt und der Leber an. So konnte gezeigt werden, dass Barriere-Defekte sowie Veränderungen in der Komposition der intestinalen Mikrobiota die kolorektale und hepatozelluläre Karzinogenese fördern. Darüber hinaus konnte die überraschende Beobachtung gemacht werden, dass die Mikrobiota nicht nur in lokaler Weise die Tumorentwicklung reguliert, sondern auch maßgeblichen Einfluss auf die Wirksamkeit systemischer Tumortherapien hat. Im vorliegenden Artikel sollen aktuelle Daten zur mikrobiellen Regulation der Tumorentstehung und der Beeinflussung systemischer Tumortherapien dargestellt werden und Implikationen für die klinische Diagnostik und Therapie diskutiert werden.

Abstract

Viruses and bacteria play central roles in gastrointestinal tumor development. This includes well-characterized contributions of Helicobacter pylori to gastric carcinoma and MALT lymphoma and of Hepatitis B and C virus infections to hepatocellular cancer. However, recent studies have demonstrated a much broader role of the microbiota in the regulation of cancer development. As such, it was shown that barrier defects and alterations in microbial community structure contribute to colorectal and hepatocellular cancer. Moreover, intriguing studies have highlighted the microbiota as a central regulator of the efficacy of systemic anti-tumor therapies. Here, we provide an overview of recent observations on the role of the microbiota in tumor development and the regulation of therapeutic anti-tumor responses and discuss the implications of these findings for clinical diagnostics and treatment.

 
  • Literatur

  • 1 de Martel C, Ferlay J, Franceschi S. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. The Lancet Oncology 2012; 13: 607-615
  • 2 Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317: 124-127
  • 3 Belcheva A, Irrazabal T, Robertson SJ. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 2014; 158: 288-299
  • 4 Dove WF, Clipson L, Gould KA. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res 1997; 57: 812-814
  • 5 Grivennikov SI, Wang K, Mucida D. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 49: 254-258
  • 6 Li Y, Kundu P, Seow SW. et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012; 33: 1231-1238
  • 7 Song X, Gao H, Lin Y. et al. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 2014; 40: 140-152
  • 8 Bollrath J, Phesse TJ, von Burstin VA. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009; 15: 91-102
  • 9 Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004; 206: 193-199
  • 10 Grivennikov S, Karin E, Terzic J. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103-113
  • 11 Irrazabal T, Belcheva A, Girardin SE. et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 2014; 54: 309-320
  • 12 Schwitalla S, Fingerle AA, Cammareri P. et al. Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell 2013; 152: 25-38
  • 13 Schwitalla S, Ziegler PK, Horst D. et al. Loss of p53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors. Cancer Cell 2013; 23: 93-106
  • 14 Peuker K, Muff S, Wang J. et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 2016; 22: 506-515
  • 15 Dejea CM, Wick EC, Hechenbleikner EM. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A 2014; 111: 18321-18326
  • 16 Castellarin M, Warren RL, Freeman JD. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22: 299-306
  • 17 Kostic AD, Gevers D, Pedamallu CS. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22: 292-298
  • 18 Kostic AD, Chun E, Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14: 207-215
  • 19 Tahara T, Yamamoto E, Suzuki H. et al. Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma. Cancer Research 2014; 74: 1311-1318
  • 20 Mima K, Cao Y, Chan AT. et al. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clinical and Translational Gastroenterology 2016; 7: e200
  • 21 Bullman S, Pedamallu CS, Sicinska E. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017; 358: 1443-1448
  • 22 Abed J, Emgård JEM, Zamir G. et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host & Microbe 2016; 20: 215-225
  • 23 Yang Y, Weng W, Peng J. et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor−κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017; 152: 851-866, e824
  • 24 Gur C, Ibrahim Y, Isaacson B. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42: 344-355
  • 25 Rubinstein MR, Wang X, Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14: 195-206
  • 26 Mima K, Nishihara R, Qian ZR. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65: 1973-1980 . doi: 10.1136/gutjnl-2015-310101. Epub 2015 Aug 26
  • 27 Mima K, Sukawa Y, Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015; 1: 653-661
  • 28 Arthur JC, Perez-Chanona E, Muhlbauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338: 120-123
  • 29 Geis AL, Fan H, Wu X. et al. Regulatory T-cell Response to Enterotoxigenic Bacteroides fragilis Colonization Triggers IL17-Dependent Colon Carcinogenesis. Cancer Discovery 2015; 5: 1098-1109
  • 30 Goodwin AC, Shields CED, Wu S. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proceedings of the National Academy of Sciences 2011; 108: 15354-15359
  • 31 Dzutsev A, Badger JH, Perez-Chanona E. et al. Microbes and Cancer. Annual Review of Immunology 2017; 35: 199-228
  • 32 Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology 2016; 70: 395-411
  • 33 Kwong TNY, Wang X, Nakatsu G. et al. Association Between Bacteremia From Specific Microbes and Subsequent Diagnosis of Colorectal Cancer. Gastroenterology 2018; 155: 383-390, e388
  • 34 Voigt AY, Zeller G, Bork P. Microbial Biomarkers for Early Cancer Detection. Dtsch Med Wochenschr 2017; 142: 267-274
  • 35 Baxter NT, Ruffin MT, Rogers MA. et al. Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med 2016; 8: 37
  • 36 Zhang HL, Yu LX, Yang W. et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. Journal of Hepatology 2012; 57: 803-812
  • 37 Dapito DH, Mencin A, Gwak GY. et al. Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4. Cancer Cell 2012; 21: 504-516
  • 38 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499: 97
  • 39 Vetizou M, Pitt JM, Daillere R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350: 1079-1084
  • 40 Sivan A, Corrales L, Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350: 1084-1089
  • 41 Routy B, Le Chatelier E, Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359: 91-97
  • 42 Matson V, Fessler J, Bao R. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359: 104-108
  • 43 Gopalakrishnan V, Spencer CN, Nezi L. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359: 97-103
  • 44 Viaud S, Saccheri F, Mignot G. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342: 971-976