Ernährung & Medizin 2008; 23(4): 170-176
DOI: 10.1055/s-0028-1121955
Originalia und Übersichten
Schwefelhaushalt
© Hippokrates Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Die schwefelhaltigen Aminosäuren

Ihre Bedeutung im zellulären Energie- und Informationsfluss und ihre Verfügbarkeit aus der NahrungThe Sulfureous Amino AcidsThilo M. Messerschmitt
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Dezember 2008 (online)

Zusammenfassung

Der Organismus benötigt für den Energiefluss, die Signalübertragung und die Heilungs- und Entgiftungsprozesse redoxaktiven Schwefel, der durch die Aminosäure Cystein bereitgestellt wird. Cystin und Methionin aus der Nahrung liefern diesen Baustein. Pflanzliche Proteine enthalten im Vergleich zu tierischen relativ zueinander mehr Cystein als Methionin. Ein Vergleich der Häufigkeit von Herz-Kreislauf-Erkrankungen zu den Essgewohnheiten lässt eine Parallelität der Zusammenhänge erkennen zu den biochemischen Abläufen des Schwefelstoffwechsels bei systemischen Erkrankungen. Danach ist einer Ernährung mit vorwiegend pflanzlichem Protein aufgrund des überwiegenden Cystingehalts der Vorzug zu geben.

Summary

The organism requires redox-active sulphur for energy flow, signal transduction as well as for healing and detoxification. It is provided by the amino acid cysteine. Cystine and ―methionine from food protein are the source of cysteine. The transformation of methionine to cysteine via transmethylation and transsulfuration reactions is causing additional cascades of metabolic signals. Nutritional proteins derived from animal or plant show distinct differences in the ratio of methionine versus cystine content. Striking parallels occur when comparing epidemiology of cardiovascular and cancer disease in correlation to ―dietary habits and the relationship of sulphur amino acid metabolism to the ratio of ―methionine versus cystein content in food. Accordingly, diets containing mainly plant ―derived proteins should be preferred due to the predominant cystine content. Characteristics of the inflammation syndrome as result of oxidative stress (e. g. loss of glutathione. ―hyperhomocysteinemia, and apoptosis) can be reduced, prevented, or treated by taking diets rich in cystine/cysteine or supplement therapy with acetyl-cysteine. Further investigations on the influence of sulphur amino acids in food on general health may be a promis―ing target for future research.

Literatur

  • 1 Messerschmitt T M. Stoffwechsel bei Ent―zündungsvorgängen.  umwelt-medizin-gesellschaft. 2004;  17 302-306
  • 2 Messerschmitt T M. N-Acetylcysteine key to protection from reactive oxygen species. Nutracon 99, Las Vegas; July 1999 Global Business Research Ltd., Stanford CT (800)868-7188
  • 3 Messerschmitt T. Atheriosclerosis and nutrient intake. AAPS Annual Meeting 2000 Indianapolis; Nov. 2000
  • 4 Maher P. Redox control of neural function: background, mechanisms, and significance.  Antioxid Redox Signal. 2006;  8 1941-1970
  • 5 Kemp M, Go Y M, Jones D P. Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology.  Free Radic Biol Med. 2008;  44 921-937
  • 6 Go Y M, Jones D P. Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 2008; Jan 26 [Epub ahead of print]
  • 7 Moran L K. et al . Thiols in cellular redox signaling and control.  Curr Med Chem. 2001;  8 763-772
  • 8 Magder S. Reactive oxygen species: toxic molecules or spark of life?.  Crit Care. 2006;  10 208
  • 9 Dröge W, Schipper H M. Oxidative stress and aberrant signaling in aging and cognitive decline.  Aging Cell. 2007;  6 361-370
  • 10 Hofer T. et al . Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA.  Biol Chem. 2005;  386 333-337
  • 11 Tenopoulou M. et al . et alRole of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis.  Biochem J. 2005;  387(Pt 3) 703-710
  • 12 Hortin G L. et al . Changes in plasma amino acid concentrations in response to HIV infection.  Clin Chem. 1994;  40 785-789
  • 13 Jones D P. Extracellular redox state: refining the definition of oxidative stress in aging.  Rejuvenation Res. 2006;  9 169-181
  • 14 Blanco R A. et al . Diurnal variation in gluta―thione and cysteine redox states in human plasma.  Am J Clin Nutr. 2007;  86 1016-1023
  • 15 Armstrong J S. et al . Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells.  Invest Ophthalmol Vis Sci. 2004;  45 4183-4189
  • 16 Nkabyo Y S. et al . Thiol/disulfide redox status is oxidized in plasma and small intestinal and colonic mucosa of rats with inadequate sulfur amino acid intake.  J Nutr. 2006;  136 1242-1248
  • 17 Paterson P G. et al . Sulfur amino acid deficiency depresses brain glutathione concentration.  Nutr Neurosci. 2001;  4 213-222
  • 18 Li J. et al . Dietary supplementation with cysteine prodrugs selectively restores tissue glutathione levels and redox status in protein-malnourished mice (1).  J Nutr Biochem. 2002;  13 625-633
  • 19 Breitkreuz R. et al . Massive loss of sulfur in HIV infection.  AIDS Res and Hum Retroviruses. 2000;  16 203-209
  • 20 Droege W. et al . Role of cysteine and gluta―thion in HIV infection and cancer cachexia: therapeutic intervention with N-acetylcysteine.  Advances in Pharmacology. 1997;  38 581-600
  • 21 Dalle-Donne I. et al . Molecular mechanisms and potential clinical significance of S-glutathionylation.  Antioxid Redox Signal. 2008;  10 445-473
  • 22 Suliman M E. et al . Influence of nutritional status on plasma and erythrocyte sulphur amino acids, sulph-hydryls, and inorganic sulphate in end-stage renal disease.  Nephrol Dial Transplant. 2002;  17 1050-1056
  • 23 Brunetti M. et al . Plasma sulfate concentration and hyperhomocysteinemia in hemodialysis patients.  J Nephrol. 2001;  14 27-31
  • 24 Dedeoglu A. et al . Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile.  Brain Res. 2004;  1012 60-65
  • 25 Vitvitsky V. et al . Redox regulation of homocysteine dependent glutathione synthesis.  Redox Report. 2003;  8 57-63
  • 26 Niculescu M D, Zeisel S H. Diet, methyl donors and DNA methylation: interactions be―tween dietary folate, methionine and choline.  J Nutr. 2002;  132(8 Suppl) 2333S-2335S
  • 27 Vasavi M. et al . DNA methylation in esophageal diseases including cancer: special reference to hMLH1 gene promoter status.  Tumori. 2006;  92 155-162
  • 28 Van Engeland M. et al . Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Ne―therlands cancer study on diet and cancer.  Cancer Res. 2003;  63 3133-3137
  • 29 Yanada M. et al . Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines.  Oncol Rep. 2005;  14 817-822
  • 30 Collard R L. et al . Methylation of the ASC gene promoter is associated with aggressive prostate cancer.  Prostate. 2006;  66 687-695
  • 31 Maeda O. et al . DNA hypermethylation in colorectal neoplasms and inflammatory bowel disease: a mini review.  Inflammopharmacology. 2006;  14 204-206
  • 32 Matsubayashi H. et al . DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease.  Cancer Res. 2006;  66 1208-1217
  • 33 Boger R H. et al . Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocysteinaemia in humans.  Clin Sci (Lond). 2001;  100 161-167
  • 34 Selley M L. Increased concentrations of homocysteine and asymmetric dimethylarginine and decreased concentrations of nitric oxide in the plasma of patients with AlzheimerŽs disease.  Neurobiol Aging. 2003;  24 903-907
  • 35 Doshi S. et al . Relationship between S-adenosylmethionin, S-adenosylhomocystein, asym―metric dimethylarginin, and endothelial function in healthy human subjects during experimental hyper- and hypohomcysteinemia.  Metabolism. 2005;  54 351-360
  • 36 Schroecksnadel K. et al . Increased asymmetric dimethylarginine concentrations in stimulated peripheral blood mononuclear cells.  Scand J Immunol. 2007;  65 525-529
  • 37 McGregor D O. et al . Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations.  Kidney Int. 2001;  59 2267-2272
  • 38 Kerins D M. et al . Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine.  Am J Clin Nutr. 2001;  74 723-729
  • 39 Ditscheid B. et al . Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo controlled double blind cross over study.  Eur J Clin Nutr. 2005;  59 768-775
  • 40 Verhoef P. et al . A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers.  Am J Clin Nutr. 2005;  82 553-558
  • 41 Di Buono M. et al . Regulation of sulfur amino acid metabolism in men in response to changes in sulfur amino acid intakes.  J Nutr. 2003;  133 733-739
  • 42 Raijmakers M T. et al . N-Acetylcysteine improves the disturbed thiol redox balance after methionine loading.  Clin Sci. 2003;  105 173-180
  • 43 Hultberg B. et al . Plasma homocysteine and thiol compound fractions after oral administration of N-acetylcysteine.  Scan J Clin Lab Invest. 1994;  54 417-422
  • 44 Wiklund O. et al . N-acetylcysteine treatment lowers plasma homocysteine but not serum lipoprotein(a) levels.  Atherosclerosis. 1996;  119 99-106
  • 45 Bostom A G. et al . Lack of effect of oral N-acetylcysteine on the acute dialysis-related ―lowering of total plasma homocysteine in hemodialysis patients.  Atherosclerosis. 1996;  120 241-244
  • 46 Ovrebo K K, Svardal A. The effect of gluta―thione modulation on the concentration of homocysteine in plasma of rats.  Pharmacol Toxicol. 2000;  87 103-107
  • 47 Suliman M E. et al . Homocysteine-lowering is not a primary target for cardiovascular disease prevention in chronic kidney disease patients.  Semin Dial. 2007;  20 523-529
  • 48 Souci S W, Fachmann W, Kraut H. Food Composition and Nutrition Tables. 6th ed Stuttgart; Medpharm Scientific Publishers 2000
  • 49 Zahn H, Golsch E. Zersetzung von Cystin, Cystein, Cystin-dihydantoin, Lanthionin, und Lanthionin-dihydantoin in wässrigen Lösungen.  Zeitschrift für physiologische Chemie. 1962;  330 38-45
  • 50 Friedman M. Dietary impact of food processing.  Annu Rev Nutr. 1992;  12 119-137
  • 51 Schnack U, Klostermeyer H. Thermischer Abbau von α-Lactalbumin.  Milchwissenschaft. 1980;  35 206-208
  • 52 Volkin D B, Klibanov A M. Thermal destruction processes in proteins involving cystine residues.  J Biol Chem. 1987;  262 2945-2950
  • 53 Scharf U, Weder J K. Model studies on the heating of food proteins.  Chem Mikrobiol Technol Lebensm. 1983;  8 71-77
  • 54 Hitchins A D. et al . et alThe use of Escherichia coli mutants to measure the bioavailability of essential amino acids in foods.  Plant Foods Hum Nutr. 1989;  39 109-120
  • 55 Wu W. et al . Amino acid availability and avail―ability-corrected amino acid score of red kidney beans (Phaseolus vulgaris L.).  J Agric Food Chem. 1996;  44 1296-1301
  • 56 Truswell A S. et al . Food and Cancer.  Nutrition Reviews. 1978;  36 313-314
  • 57 Nothlings U. et al . Meat and fat intake as risk factors for pancreatic cancer: the multiethnic cohort study.  J Natl Cancer Inst. 2005;  97 1458-1465
  • 58 Rose W. et al . The amino acid requirements of adult man.  Nutr Abstr Rev. 1957;  27 631-647
  • 59 Ditscheid B. et al . Effects of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study.  Eur J Clin Nutr. 2005;  59 768-775
  • 60 Önning G. et al . Effects of consumption of oat milk, soya milk, or cow’s milk on plasma lipids and antioxidative capacity in healthy subjects.  Ann Nutr Metab. 1998;  42 211-220
  • 61 Liu S. et al . Whole-grain consumption and risk of coronary heart disease: results from the Nurses’ Health Study.  Am J Clin Nutr. 1999;  70 412-419
  • 62 Tozer R G. Cysteine-rich protein reverses weight loss in lung cancer patients receiving chemotherapy or radiotherapy.  Antioxid Redox Signal. 2008;  10 395-402
  • 63 Roes E M. et al . Effects of oral N-acetylcysteine on plasma homocysteine and whole blood glutathione levels in healthy, non pregnant women.  Clin Chem Lab Med. 2002;  40 496-498
  • 64 Ventura P. et al . Urinary and plasma homocysteine and cysteine levels during prolonged oral N-acetylcysteine therapy.  Pharmacology. 2003;  68 105-114
  • 65 Taha M. et al . Intravenous N-acetylcysteine during hemodialysis reduces asymmetric ―dimethylarginine level in end-stage renal disease patients.  Clin Nephrol. 2008;  69 24-32
  • 66 Trimarchi H. et al . N-acetylcysteine reduces malondialdehyde levels in chronic hemodialysis patients – a pilot study.  Clin Nephrol. 2003;  59 441-446
  • 67 Baker D H. Comparative species utilization and toxicity of sulfur amino acids.  J Nutr. 2006;  136(6 Suppl) 1670S-1675S
  • 68 Glunde K. et al . Choline metabolism in cancer: implications for diagnosis and therapy.  Expert Rev Mol Diagn. 2006;  6 821-829
  • 69 Huber W. et al . Entzündungssyndrom: Erfahrungen, Diagnose und begleitende Maß―nahmen mit Antioxidanzien.  OM. 2006;  1 16-21

Dr. Thilo M. Messerschmitt

Ledererzeile 31a

83512 Wasserburg

eMail: thilo.messerschmitt@web.de

    >