Semin Thromb Hemost 2011; 37(2): 153-157
DOI: 10.1055/s-0030-1270343
© Thieme Medical Publishers

Sources of Thrombomodulin in Pre-Eclampsia: Renal Dysfunction or Endothelial Damage?

Luci Dusse1 , Lara Godoi1 , Rashid S. Kazmi2 , Patrícia Alpoim1 , Juliane Petterson3 , Bashir A. Lwaleed4 , Maria Carvalho1
  • 1Departments of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Brazil
  • 2Haematology, Southampton University Hospitals NHS Trust, Southampton, United Kingdom
  • 3Gynecology and Obstetrics, Maternidade Odete Valadares, Belo Horizonte, Brazil
  • 4Urology, Southampton University Hospitals NHS Trust and School of Health Sciences, University of Southampton, Southampton, United Kingdom
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. März 2011 (online)

ABSTRACT

A plethora of evidence exists to show that endothelial perturbations underlie many of the clinical features of pre-eclampsia (P-EC), and consequently the markers signifying endothelial disturbance exhibit a rise in plasma. Among others, plasma thrombomodulin (TM) level rises significantly. TM is a transmembrane glycoprotein expressed abundantly on the endothelium of the microvasculature. It neutralizes the thrombotic potential of thrombin, mediating this anticoagulant effect through activation of protein C. Endothelial injury results in a localized loss of TM with a focal impairment of protein C activation and resultant thrombotic tendency. Mainly expressed on the endothelial cells, a small amount of TM is found in plasma with levels rising in certain pathological conditions. Although elevation in levels of TM can be due to endothelial TM proteolysis secondary to endothelial insult, ineffective clearance may account for this in renal and hepatic dysfunction. In P-EC not only is there ongoing endothelial injury, but renal function is also affected. To establish the cause of elevated TM level in P-EC, three groups of pregnant women were investigated. It appears that the elevation in plasma TM is not related to renal or hepatic dysfunction in P-EC. It is more likely that plasma TM is derived from placental or vascular endothelial cells subsequent to activation or damage, confirming the hypothesis that damage to vascular endothelial cells is the primary underlying cause of P-EC.

REFERENCES

  • 1 Boffa M-C, Burke B, Haudenschild C C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces.  J Histochem Cytochem. 1987;  35 (11) 1267-1276
  • 2 Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore E E. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP.  Dev Biol. 1987;  122 (2) 483-491
  • 3 Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays.  Dev Biol. 1990;  140 (1) 113-122
  • 4 Boehme M W, Deng Y, Raeth U et al. Release of thrombomodulin from endothelial cells by concerted action of TNF-α and neutrophils: in vivo and in vitro studies.  Immunology. 1996;  87 (1) 134-140
  • 5 Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids.  Curr Biol. 2004;  14 (3) 236-241
  • 6 Walker F J, Fay P J. Regulation of blood coagulation by the protein C system.  FASEB J. 1992;  6 (8) 2561-2567
  • 7 Esmon C T. The roles of protein C and thrombomodulin in the regulation of blood coagulation.  J Biol Chem. 1989;  264 (9) 4743-4746
  • 8 Esmon C T. Thrombomodulin as a model of molecular mechanisms that modulate protease specificity and function at the vessel surface.  FASEB J. 1995;  9 (10) 946-955
  • 9 Bouma B N, Mosnier L O. Thrombin activatable fibrinolysis inhibitor (TAFI) at the interface between coagulation and fibrinolysis.  Pathophysiol Haemost Thromb. 2003/2004;  33 (5–6) 375-381
  • 10 Bajzar L, Morser J, Nesheim M. TAFI, or plasma procarboxypeptidase B, couples the coagulation and fibrinolytic cascades through the thrombin-thrombomodulin complex.  J Biol Chem. 1996;  271 (28) 16603-16608
  • 11 Wang W, Nagashima M, Schneider M, Morser J, Nesheim M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation.  J Biol Chem. 2000;  275 (30) 22942-22947
  • 12 Takaya M, Ichikawa Y, Kobayashi N et al. Serum thrombomodulin and anticardiolipin antibodies in patients with systemic lupus erythematosus.  Clin Exp Rheumatol. 1991;  9 (5) 495-499
  • 13 Asakura H, Jokaji H, Saito M et al. Plasma levels of soluble thrombomodulin increase in cases of disseminated intravascular coagulation with organ failure.  Am J Hematol. 1991;  38 (4) 281-287
  • 14 Salomaa V, Matei C, Aleksic N et al. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study.  Lancet. 1999;  353 (9166) 1729-1734
  • 15 Wu K K. Soluble thrombomodulin and coronary heart disease.  Curr Opin Lipidol. 2003;  14 (4) 373-375
  • 16 Wu K K, Aleksic N, Ballantyne C M, Ahn C, Juneja H, Boerwinkle E. Interaction between soluble thrombomodulin and intercellular adhesion molecule-1 in predicting risk of coronary heart disease.  Circulation. 2003;  107 (13) 1729-1732
  • 17 National High Blood Pressure Education Program Working Group Report on High Pressure in Pregnancy . National High Blood Pressure Education Program Working Group Report on High Blood Pressure in Pregnancy.  Am J Obstet Gynecol. 1990;  163 (5 Pt 1) 1691-1712
  • 18 Roberts J M. Endothelial dysfunction in preeclampsia.  Semin Reprod Endocrinol. 1998;  16 (1) 5-15
  • 19 Granger J P, Alexander B T, Bennett W A, Khalil R A. Pathophysiology of pregnancy-induced hypertension.  Am J Hypertens. 2001;  14 (6 Pt 2) 178S-185S
  • 20 Arias F, Mancilla-Jimenez R. Hepatic fibrinogen deposits in pre-eclampsia. Immunofluorescent evidence.  N Engl J Med. 1976;  295 (11) 578-582
  • 21 Brown M A. The physiology of pre-eclampsia.  Clin Exp Pharmacol Physiol. 1995;  22 (11) 781-791
  • 22 Bonnar J, McNicol G P, Douglas A S. Coagulation and fibrinolytic systems in pre-eclampsia and eclampsia.  Br Med J. 1971;  2 (5752) 12-16
  • 23 Redman C W, Sacks G P, Sargent I L. Preeclampsia: an excessive maternal inflammatory response to pregnancy.  Am J Obstet Gynecol. 1999;  180 (2 Pt 1) 499-506
  • 24 Redman C WG, Sargent I L. Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review.  Placenta. 2003;  24 (Suppl A) S21-S27
  • 25 Dusse L M, Carvalho M G, Getliffe K, Voegeli D, Cooper A J, Lwaleed B A. Increased circulating thrombomodulin levels in pre-eclampsia.  Clin Chim Acta. 2008;  387 (1-2) 168-171
  • 26 Boffa M C, Valsecchi L, Fausto A et al. Predictive value of plasma thrombomodulin in preeclampsia and gestational hypertension.  Thromb Haemost. 1998;  79 (6) 1092-1095
  • 27 Hsu C D, Copel J A, Hong S F, Chan D W. Thrombomodulin levels in preeclampsia, gestational hypertension, and chronic hypertension.  Obstet Gynecol. 1995;  86 (6) 897-899
  • 28 Hsu C D, Iriye B, Johnson T R, Witter F R, Hong S F, Chan D W. Elevated circulating thrombomodulin in severe preeclampsia.  Am J Obstet Gynecol. 1993;  169 (1) 148-149
  • 29 Ishii H, Nakano M, Tsubouchi J et al. Establishment of enzyme immunoassay of human thrombomodulin in plasma and urine using monoclonal antibodies.  Thromb Haemost. 1990;  63 (2) 157-162
  • 30 Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases.  Blood. 1990;  76 (10) 2024-2029
  • 31 Asakura H, Jokaji H, Saito M et al. Plasma levels of soluble thrombomodulin increase in cases of disseminated intravascular coagulation with organ failure.  Am J Hematol. 1991;  38 (4) 281-287
  • 32 Hayashi M, Inoue T, Hoshimoto K, Negishi H, Ohkura T, Inaba N. Characterization of five marker levels of the hemostatic system and endothelial status in normotensive pregnancy and pre-eclampsia.  Eur J Haematol. 2002;  69 (5–6) 297-302
  • 33 Abe H, Okajima K, Okabe H, Takatsuki K, Binder B R. Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro.  J Lab Clin Med. 1994;  123 (6) 874-881
  • 34 Boehme M W, Deng Y, Raeth U et al. Release of thrombomodulin from endothelial cells by concerted action of TNF-alpha and neutrophils: in vivo and in vitro studies.  Immunology. 1996;  87 (1) 134-140
  • 35 Greer I A, Dawes J, Johnston T A, Calder A A. Neutrophil activation is confined to the maternal circulation in pregnancy-induced hypertension.  Obstet Gynecol. 1991;  78 (1) 28-32
  • 36 Tsukimori K, Maeda H, Ishida K, Nagata H, Koyanagi T, Nakano H. The superoxide generation of neutrophils in normal and preeclamptic pregnancies.  Obstet Gynecol. 1993;  81 (4) 536-540
  • 37 Tsukimori K, Nakano H, Wake N. Difference in neutrophil superoxide generation during pregnancy between preeclampsia and essential hypertension.  Hypertension. 2007;  49 (6) 1436-1441
  • 38 Minakami H, Takahashi T, Izumi A, Tamada T. Increased levels of plasma thrombomodulin in preeclampsia.  Gynecol Obstet Invest. 1993;  36 (4) 208-210
  • 39 Nadar S K, Al Yemeni E, Blann A D, Lip G YH. Thrombomodulin, von Willebrand factor and E-selectin as plasma markers of endothelial damage/dysfunction and activation in pregnancy induced hypertension.  Thromb Res. 2004;  113 (2) 123-128
  • 40 Hsu C D, Lucas R B, Johnson T R, Hong S F, Chan D W. Elevated urine thrombomodulin/creatinine ratio in severely preeclamptic pregnancies.  Am J Obstet Gynecol. 1994;  171 (3) 854-856
  • 41 Bontis J, Vavilis D, Agorastos T, Zournatzi V, Konstantinidis T, Tagou K. Maternal plasma level of thrombomodulin is increased in mild preeclampsia.  Eur J Obstet Gynecol Reprod Biol. 1995;  60 (2) 139-141
  • 42 Rousseau A, Favier R, Van Dreden P V. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia?.  Eur J Obstet Gynecol Reprod Biol. 2009;  146 (1) 46-49
  • 43 Chavarría M E, Lara-González L, García-Paleta Y, Vital-Reyes V S, Reyes A. Adhesion molecules changes at 20 gestation weeks in pregnancies complicated by preeclampsia.  Eur J Obstet Gynecol Reprod Biol. 2008;  137 (2) 157-164
  • 44 Salem H H, Maruyama I, Ishii H, Majerus P W. Isolation and characterization of thrombomodulin from human placenta.  J Biol Chem. 1984;  259 (19) 12246-12251
  • 45 Maruyama I, Bell C E, Majerus P W. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta.  J Cell Biol. 1985;  101 (2) 363-371
  • 46 Uszyński M, Sztenc S, Zekanowska E, Uszyński W. Thrombomodulin in human gestational tissues: placenta, fetal membranes and myometrium.  Adv Med Sci. 2006;  51 312-315
  • 47 Bosco C, Parra M, Barja P et al. Increased immunohistochemical expression of thrombomodulin at placental perivascular myofibroblast in severe preeclampsia (PE).  Histol Histopathol. 2005;  20 (4) 1045-1055
  • 48 Magriples U, Chan D W, Bruzek D, Copel J A, Hsu C D. Thrombomodulin: a new marker for placental abruption.  Thromb Haemost. 1999;  81 (1) 32-34
  • 49 Strijbos M H, Snijder C A, Kraan J, Lamers C H, Gratama J W, Duvekot J J. Levels of circulating endothelial cells in normotensive and severe preeclamptic pregnancies.  Cytometry B Clin Cytom. 2010;  78 (6) 382-386

Luci DussePh.D. 

Department of Clinical and Toxicological Analysis

Federal University of Minas Gerais, Brazil

eMail: lucim@farmacia.ufmg.br

    >