Horm Metab Res 2012; 44(03): 194-201
DOI: 10.1055/s-0031-1295461
Review
© Georg Thieme Verlag KG Stuttgart · New York

Aldosterone and the Kidney

V. G. Fourkiotis
1   Department of Clinical Endocrinology, Charité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
,
G. Hanslik
1   Department of Clinical Endocrinology, Charité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
,
F. Hanusch
1   Department of Clinical Endocrinology, Charité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
,
J. Lepenies
2   KfH Dialysis Center Bismarckstrasse, Berlin, Germany
,
M. Quinkler
1   Department of Clinical Endocrinology, Charité Campus Mitte, Charité University Medicine Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

received 30 August 2011

accepted 26 October 2011

Publication Date:
07 December 2011 (online)

Abstract

The mineralocorticoid aldosterone is a key regulator of blood pressure, fluid and electrolyte homeostasis, and acts via the mineralocorticoid receptor (MR). In recent years, an increasing number of studies revealed deleterious effects of aldosterone via its receptor. Especially in patients with primary hyperaldosteronism (PHA) a significant higher risk of developing cardiovascular comorbidities and comortalities was reported. Also renal insufficiency is clearly increased in patients with PHA indicating a role of aldosterone and the MR in the pathogenesis of renal injury. It has been shown that aldosterone in combination with an elevated salt intake, leads to renal inflammation, fibrosis, podocyte injury, and mesangial cell proliferation. This review focuses on the current knowledge of aldosterone effects in the kidney and highlights this topic from 2 perspectives: from clinical medicine and from experimental studies.

 
  • References

  • 1 Fuller PJ, Young MJ. Mechanisms of Mineralocorticoid Action. Hypertension 2005; 46: 1227-1235
  • 2 Danforth Jr DN, Orlando MM, Bartter FC, Javadpour N. Renal changes in primary aldosteronism. J Urol 1977; 117: 140-144
  • 3 Hené RJ, Boer P, Koomans HA, Mees EJ. Plasma aldosterone concentrations in chronic renal disease. Kidney Int 1982; 21: 98-101
  • 4 Walker WG. Hypertension-related renal injury: a major contributor to end-stage renal disease. Am J Kidney Dis 1993; 22: 164-173
  • 5 Halimi JM, Mimran A. Albuminuria in untreated patients with primary aldosteronism or essential hypertension. J Hypertens 1995; 13: 1801-1802
  • 6 Fox CS, Larson MG, Hwang S-J, Leip EP, Rifai N, Levy D, Benjamin EJ, Murabito JM, Meigs JB, Vasan RS. Cross-sectional relations of serum aldosterone and urine sodium excretion to urinary albumin excretion in a community-based sample. Kidney Int 2006; 69: 2064-2069
  • 7 Wakisaka M, Spiro MJ, Spiro RG. Synthesis of type VI collagen by cultured glomerular cells and comparison of its regulation by glucose and other factors with that of type IV collagen. Diabetes 1994; 43: 95-103
  • 8 Briet M, Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 2010; 6: 261-273
  • 9 Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003; 139: 137-147
  • 10 Yamagata K, Ishida K, Sairenchi T, Takahashi H, Ohba S, Shiigai T, Narita M, Koyama A. Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int 2006; 71: 159-166
  • 11 Levey AS, Coresh J. Chronic kidney disease. Lancet 2011; [Epub ahead of print]; available from http://www.ncbi.nlm.nih.gov/pubmed/21840587
  • 12 Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, King AJ, Klahr S, Massry SG, Seifter JL. Modification of Diet in Renal Disease (MDRD) Study Group. Blood Pressure Control, Proteinuria, and the Progression of Renal Disease. Ann Intern Med 1995; 123: 754-762
  • 13 Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage?. J Am Soc Nephrol 2006; 17: 2974-2984
  • 14 Tonelli M, Klarenbach SW, Lloyd AM, James MT, Bello AK, Manns BJ, Hemmelgarn BR. Higher estimated glomerular filtration rates may be associated with increased risk of adverse outcomes, especially with concomitant proteinuria. Kidney Int 2011; [Epub ahead of print]; available from: http://dx.doi.org/10.1038/ki.2011.280
  • 15 van der Velde M, Matsushita K, Coresh J, Astor BC, Woodward M, Levey A, de Jong P, Gansevoort RT, El-Nahas M, Eckardt K-U, Kasiske BL, Ninomiya T, Chalmers J, Macmahon S, Tonelli M, Hemmelgarn B, Sacks F, Curhan G, Collins AJ, Li S, Chen S-C, Hawaii Cohort KP, Lee BJ, Ishani A, Neaton J, Svendsen K, Mann JFE, Yusuf S, Teo KK. u. a. . Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79: 1341-1352
  • 16 Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003; 41: 64-68
  • 17 Rachmani R, Slavachevsky I, Amit M, Levi Z, Kedar Y, Berla M, Ravid M. The effect of spironolactone, cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction: a randomized controlled study. Diabet Med 2004; 21: 471-475
  • 18 Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am J Kidney Dis 2005; 46: 45-51
  • 19 Chrysostomou A, Pedagogos E, MacGregor L, Becker GJ. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol 2006; 1: 256-262
  • 20 Furumatsu Y, Nagasawa Y, Tomida K, Mikami S, Kaneko T, Okada N, Tsubakihara Y, Imai E, Shoji T. Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker. Hypertens Res 2008; 31: 59-67
  • 21 Rafiq K, Hitomi H, Nakano D, Nishiyama A. Pathophysiological Roles of Aldosterone and Mineralocorticoid Receptor in the Kidney. J Pharmacol Sci 2011; 115: 1-7
  • 22 Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R, Beckerman B. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006; 1: 940-951
  • 23 Tylicki L, Rutkowski P, Renke M, Larczyński W, Aleksandrowicz E, Lysiak-Szydlowska W, Rutkowski B. Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am J Kidney Dis 2008; 52: 486-493
  • 24 Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 2006; 70: 2116-2123
  • 25 Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving H-H. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 2005; 28: 2106-2112
  • 26 Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, Parving HH. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 2006; 70: 536-542
  • 27 Quinkler M, Zehnder D, Eardley KS, Lepenies J, Howie AJ, Hughes SV, Cockwell P, Hewison M, Stewart PM. Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation 2005; 112: 1435-1443
  • 28 Ribstein J, Du Cailar G, Fesler P, Mimran A. Relative glomerular hyperfiltration in primary aldosteronism. J Am Soc Nephrol 2005; 16: 1320-1325
  • 29 Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, Sechi LA. Relationships of plasma renin levels with renal function in patients with primary aldosteronism. Clin J Am Soc Nephrol 2007; 2: 722-731
  • 30 Milliez P, Girerd X, Plouin P-F, Blacher J, Safar ME, Mourad J-J. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005; 45: 1243-1248
  • 31 Catena C, Colussi G, Lapenna R, Nadalini E, Chiuch A, Gianfagna P, Sechi LA. Long-term cardiac effects of adrenalectomy or mineralocorticoid antagonists in patients with primary aldosteronism. Hypertension 2007; 50: 911-918
  • 32 Catena C, Colussi G, Nadalini E, Chiuch A, Baroselli S, Lapenna R, Sechi LA. Cardiovascular outcomes in patients with primary aldosteronism after treatment. Arch Intern Med 2008; 168: 80-85
  • 33 Born-Frontsberg E, Reincke M, Rump LC, Hahner S, Diederich S, Lorenz R, Allolio B, Seufert J, Schirpenbach C, Beuschlein F, Bidlingmaier M, Endres S, Quinkler M. Cardiovascular and cerebrovascular comorbidities of hypokalemic and normokalemic primary aldosteronism: results of the German Conn’s Registry. J Clin Endocrinol Metab 2009; 94: 1125-1130
  • 34 Quinkler M, Born-Frontsberg E, Fourkiotis VG. Comorbidities in primary aldosteronism. Horm Metab Res 2010; 42: 429-434
  • 35 Reincke M, Meisinger C, Holle R, Quinkler M, Hahner S, Beuschlein F, Bidlingmaier M, Seissler J, Endres S. Is primary aldosteronism associated with diabetes mellitus? Results of the German Conn’s Registry. Horm Metab Res 2010; 42: 435-439
  • 36 Born-Frontsberg E, Reincke M, Beuschlein F, Quinkler M. Tumor size of Conn’s adenoma and comorbidities. Horm Metab Res 2009; 41: 785-788
  • 37 Shigematsu Y, Hamada M, Okayama H, Hara Y, Hayashi Y, Kodama K, Kohara K, Hiwada K. Left ventricular hypertrophy precedes other target-organ damage in primary aldosteronism. Hypertension 1997; 29: 723-727
  • 38 Nishimura M, Uzu T, Fujii T, Kuroda S, Nakamura S, Inenaga T, Kimura G. Cardiovascular complications in patients with primary aldosteronism. Am J Kidney Dis 1999; 33: 261-266
  • 39 Rossi GP, Bernini G, Desideri G, Fabris B, Ferri C, Giacchetti G, Letizia C, Maccario M, Mannelli M, Matterello M-J, Montemurro D, Palumbo G, Rizzoni D, Rossi E, Pessina AC, Mantero F. Renal damage in primary aldosteronism: results of the PAPY Study. Hypertension 2006; 48: 232-238
  • 40 Wu VC, Yang SY, Lin JW, Cheng BW, Kuo CC, Tsai CT, Chu TS, Huang KH, Wang SM, Lin YH, Chiang CK, Chang HW, Lin CY, Lin LY, Chiu JS, Hu FC, Chueh SC, Ho YL, Liu KL, Lin SL, Yen RF, Wu KD. Kidney impairment in primary aldosteronism. Clin Chim Acta 2011; 412: 1319-1325
  • 41 Reincke M, Rump LC, Quinkler M, Hahner S, Diederich S, Lorenz R, Seufert J, Schirpenbach C, Beuschlein F, Bidlingmaier M, Meisinger C, Holle R, Endres S. for the Participants of the German Conn’s Registry . Risk Factors Associated with a Low Glomerular Filtration Rate in Primary Aldosteronism. J Clin Endocrinol Metab 2008; 94: 869-875
  • 42 Sechi LA, Novello M, Lapenna R, Baroselli S, Nadalini E, Colussi GL, Catena C. Long-term renal outcomes in patients with primary aldosteronism. JAMA 2006; 295: 2638
  • 43 Dworkin LD, Feiner HD, Randazzo J. Glomerular hypertension and injury in desoxycorticosterone-salt rats on antihypertensive therapy. Kidney Int 1987; 31: 718-724
  • 44 Hammer F, Edwards NC, Hughes BA, Steeds RP, Ferro CJ, Townend JN, Stewart PM. The effect of spironolactone upon corticosteroid hormone metabolism in patients with early stage chronic kidney disease. Clin Endocrinol (Oxf) 2010; 73: 566-572
  • 45 Rizzoni D, Paiardi S, Rodella L, Porteri E, De Ciuceis C, Rezzani R, Boari GEM, Zani F, Miclini M, Tiberio GAM, Giulini SM, Rosei CA, Bianchi R, Rosei EA. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with primary aldosteronism. J Clin Endocrinol Metab 2006; 91: 2638-2642
  • 46 Holaj R, Zelinka T, Wichterle D, Petrák O, Štrauch B, Widimskỳ Jr J. Increased intima-media thickness of the common carotid artery in primary aldosteronism in comparison with essential hypertension. J Hypertens 2007; 25: 1451
  • 47 Bernini G, Galetta F, Franzoni F, Bardini M, Taurino C, Bernardini M, Ghiadoni L, Bernini M, Santoro G, Salvetti A. Arterial stiffness, intima-media thickness and carotid artery fibrosis in patients with primary aldosteronism. J Hypertens 2008; 26: 2399
  • 48 Min L-J, Mogi M, Li J-M, Iwanami J, Iwai M, Horiuchi M. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res 2005; 97: 434-442
  • 49 Nakamura Y, Suzuki S, Suzuki T, Ono K, Miura I, Satoh F, Moriya T, Saito H, Yamada S, Ito S, Sasano H. MDM2: a novel mineralocorticoid-responsive gene involved in aldosterone-induced human vascular structural remodeling. Am J Pathol 2006; 169: 362-371
  • 50 Jeong Y, Chaupin DF, Matsushita K, Yamakuchi M, Cameron SJ, Morrell CN, Lowenstein CJ. Aldosterone activates endothelial exocytosis. Proc Natl Acad Sci USA 2009; 106: 3782-3787
  • 51 Lemarié CA, Simeone SMC, Nikonova A, Ebrahimian T, Deschênes M-E, Coffman TM, Paradis P, Schiffrin EL. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ Res 2009; 105: 852-859
  • 52 Novello M, Catena C, Nadalini E, Colussi GL, Baroselli S, Chiuch A, Lapenna R, Bazzocchi M, Sechi LA. Renal cysts and hypokalemia in primary aldosteronism: results of long-term follow-up after treatment. J Hypertens 2007; 25: 1443-1450
  • 53 Ogasawara M, Nomura K, Toraya S, Kikuchi C, Katayama M, Ujihara M, Kono A. Clinical implications of renal cyst in primary aldosteronism. Endocr J 1996; 43: 261-268
  • 54 Sechi LA, Novello M, Lapenna R, Baroselli S, Nadalini E, Colussi GL, Catena C. Long-term renal outcomes in patients with primary aldosteronism. JAMA 2006; 295: 2638-2645
  • 55 Sechi LA, Colussi GL, Di Fabio A, Catena C. Cardiovascular and renal damage in primary aldosteronism: outcomes after treatment. Am. J. Hypertension 2010; 23: 1253-1260
  • 56 Reams GP, Bauer JH. Effect of enalapril in subjects with hypertension associated with moderate to severe renal dysfunction. Arch Intern Med 1986; 146: 2145-2148
  • 57 Freis ED. Salt, volume and the prevention of hypertension. Circulation 1976; 53: 589-595
  • 58 Law MR, Frost CD, Wald NJ. Dietary salt and blood pressure. J Hypertens Suppl 1991; 9: S37-S41; discussion S47–S49
  • 59 He FJ, MacGregor GA. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J Hum Hypertens 2002; 16: 761-770
  • 60 Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller 3rd ER, Simons-Morton DG, Karanja N, Lin PH. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001; 344: 3-10
  • 61 Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I – Analysis of observational data among populations. BMJ 1991; 302: 811-815
  • 62 Frost CD, Law MR, Wald NJ. By how much does dietary salt reduction lower blood pressure? II – Analysis of observational data within populations. BMJ 1991; 302: 815-818
  • 63 Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? III – Analysis of data from trials of salt reduction. BMJ 1991; 302: 819-824
  • 64 Pimenta E, Gaddam KK, Oparil S, Aban I, Husain S, Dell’Italia LJ, Calhoun DA. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension 2009; 54: 475-481
  • 65 Quinkler M, Stewart PM. Hypertension and the cortisol-cortisone shuttle. J Clin Endocrinol Metab 2003; 88: 2384-2392
  • 66 Quinkler M, Bappal B, Draper N, Atterbury AJ, Lavery GG, Walker EA, DeSilva V, Taylor NF, Hala S, Rajendra N, Stewart PM. Molecular basis for the apparent mineralocorticoid excess syndrome in the Oman population. Mol Cell Endocrinol 2004; 217: 143-149
  • 67 Kawai S, Ichikawa Y, Homma M. Differences in metabolic properties among cortisol, prednisolone, and dexamethasone in liver and renal diseases: accelerated metabolism of dexamethasone in renal failure. J Clin Endocrinol Metab 1985; 60: 848-854
  • 68 Srivastava LS, Werk Jr EE, Thrasher K, Sholiton LJ, Kozera R, Nolten W, Knowles Jr HC. Plasma cortisone concentration as measured by radioimmunoassay. J Clin Endocrinol Metab 1973; 36: 937-943
  • 69 Whitworth JA, Stewart PM, Burt D, Atherden SM, Edwards CR. The kidney is the major site of cortisone production in man. Clin Endocrinol (Oxf) 1989; 31: 355-361
  • 70 Vogt B, Frey BM, Frey FJ. 11 beta-Hydroxysteroid dehydrogenase: pathophysiology. Adv Nephrol Necker Hosp 1999; 29: 127-148
  • 71 Riddle MC, McDaniel PA. Renal 11 beta-hydroxysteroid dehydrogenase activity is enhanced by ramipril and captopril. J Clin Endocrinol Metab 1994; 78: 830-834
  • 72 Quinkler M, Zehnder D, Lepenies J, Petrelli MD, Moore JS, Hughes SV, Cockwell P, Hewison M, Stewart PM. Expression of renal 11beta-hydroxysteroid dehydrogenase type 2 is decreased in patients with impaired renal function. Eur J Endocrinol 2005; 153: 291
  • 73 Liu YJ, Nakagawa Y, Toya K, Wang Y, Saegusa H, Nakanishi T, Ohzeki T. Effects of spironolactone on systolic blood pressure in experimental diabetic rats. Kidney Int 2000; 57: 2064-2071
  • 74 Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996; 98: 1063
  • 75 Blasi ER, Rocha R, Rudolph AE, Blomme EAG, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int 2003; 63: 1791-1800
  • 76 Amar L, Azizi M, Menard J, Peyrard S, Watson C, Plouin P-F. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 2010; 56: 831-838
  • 77 Lea WB, Kwak ES, Luther JM, Fowler SM, Wang Z, Ma J, Fogo AB, Brown NJ. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int 2009; 75: 936-944
  • 78 Rigel DF, Fu F, Beil M, Hu C-W, Liang G, Jeng AY. Pharmacodynamic and pharmacokinetic characterization of the aldosterone synthase inhibitor FAD286 in two rodent models of hyperaldosteronism: comparison with the 11beta-hydroxylase inhibitor metyrapone. J Pharmacol Exp Ther 2010; 334: 232-243
  • 79 Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al-Saadi N, Dechend R, Wellner M, Meiners S, Maser-Gluth C, Jeng AY, Webb RL, Luft FC, Muller DN. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation 2005; 111: 3087-3094
  • 80 Fujisawa G, Okada K, Muto S, Fujita N, Itabashi N, Kusano E, Ishibashi S. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int 2004; 66: 1493-1502
  • 81 Sun G-P, Kohno M, Guo P, Nagai Y, Miyata K, Fan Y-Y, Kimura S, Kiyomoto H, Ohmori K, Li D-T, Abe Y, Nishiyama A. Involvements of Rho-kinase and TGF-beta pathways in aldosterone-induced renal injury. J Am Soc Nephrol 2006; 17: 2193-2201
  • 82 Pérez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, Bonventre JV, Gamba G, Bobadilla NA. Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol 2007; 292: F131-F139
  • 83 Nagase M. Activation of the aldosterone/mineralocorticoid receptor system in chronic kidney disease and metabolic syndrome. Clin Exp Nephrol 2010; 14: 303-314
  • 84 Toyonaga J, Tsuruya K, Ikeda H, Noguchi H, Yotsueda H, Fujisaki K, Hirakawa M, Taniguchi M, Masutani K, Iida M. Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production. Nephrol Dial Transplant 2011; 26: 2475-2484
  • 85 Chen C, Liang W, Jia J, van Goor H, Singhal PC, Ding G. Aldosterone Induces Apoptosis in Rat Podocytes: Role of PI3-K/Akt and p38MAPK Signaling Pathways. Nephron Exp Nephrol 2009; 113: e26-e34
  • 86 Friis S, Sørensen HT, Mellemkjaer L, McLaughlin JK, Nielsen GL, Blot WJ, Olsen JH. Angiotensin-converting enzyme inhibitors and the risk of cancer: a population-based cohort study in Denmark. Cancer 2001; 92: 2462-2470
  • 87 Moore LE, Wilson RT, Campleman SL. Lifestyle factors, exposures, genetic susceptibility, and renal cell cancer risk: a review. Cancer Invest 2005; 23: 240-255
  • 88 Schupp N, Kolkhof P, Queisser N, Gärtner S, Schmid U, Kretschmer A, Hartmann E, Oli RG, Schäfer S, Stopper H. Mineralocorticoid receptor-mediated DNA damage in kidneys of DOCA-salt hypertensive rats. FASEB J 2011; 25: 968
  • 89 Grossman E, Messerli FH, Boyko V, Goldbourt U. Is there an association between hypertension and cancer mortality?. Am J Med 2002; 112: 479-486
  • 90 Fan Y-Y, Kohno M, Hitomi H, Kitada K, Fujisawa Y, Yatabe J, Yatabe M, Felder RA, Ohsaki H, Rafiq K, Sherajee SJ, Noma T, Nishiyama A, Nakano D. Aldosterone/Mineralocorticoid Receptor Stimulation Induces Cellular Senescence in the Kidney. Endocrinology 2010; 152: 680-688
  • 91 Schmidt BM. Rapid non-genomic effects of aldosterone on the renal vasculature. Steroids 2008; 73: 961-965
  • 92 Wehling M. Specific, nongenomic actions of steroid hormones. Annu Rev Physiol 1997; 59: 365-393
  • 93 Vinson GP, Coghlan JP. Expanding view of aldosterone action, with an emphasis on rapid action. Clin Exp Pharmacol Physiol 2010; 37: 410-416
  • 94 Griol-Charhbili V, Fassot C, Messaoudi S, Perret C, Agrapart V, Jaisser F. Epidermal growth factor receptor mediates the vascular dysfunction but not the remodeling induced by aldosterone/salt. Hypertension 2011; 57: 238-244
  • 95 Huang S, Zhang A, Ding G, Chen R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol-Renal Physiol 2009; 296: F1323
  • 96 Sinphitukkul K, Eiam-Ong S, Manotham K, Eiam-Ong S. Nongenomic effects of aldosterone on renal protein expressions of pEGFR and pERK1/2 in rat kidney. Am J Nephrol 2011; 33: 111-120
  • 97 Molnar GA, Lindschau C, Dubrovska G, Mertens PR, Kirsch T, Quinkler M, Gollasch M, Wresche S, Luft FC, Muller DN, Fiebeler A. Glucocorticoid-Related Signaling Effects in Vascular Smooth Muscle Cells. Hypertension 2008; 51: 1372-1378
  • 98 Young MJ, Morgan J, Brolin K, Fuller PJ, Funder JW. Activation of Mineralocorticoid Receptors by Exogenous Glucocorticoids and the Development of Cardiovascular Inflammatory Responses in Adrenalectomized Rats. Endocrinology 2010; 151: 2622-2628
  • 99 Lam EYM, Funder J, Nikolic-Paterson D, Fuller PJ, Young MJ. Mineralocorticoid Receptor Blockade But Not Steroid Withdrawal Reverses Renal Fibrosis in Deoxycorticosterone/Salt Rats. Endocrinology 2006; 147: 3623-3629
  • 100 Ou XM, Storring JM, Kushwaha N, Albert PR. Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem 2001; 276: 14299-14307
  • 101 Tsugita M, Iwasaki Y, Nishiyama M, Taguchi T, Shinahara M, Taniguchi Y, Kambayashi M, Nishiyama A, Gomez-Sanchez CE, Terada Y, Hashimoto K. Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor-dependent transcription in GR-deficient BE(2)C and T84 cells in vitro. Mol Cell Endocrinol 2009; 302: 18-25
  • 102 Nishi M, Kawata M. Dynamics of glucocorticoid receptor and mineralocorticoid receptor: implications from live cell imaging studies. Neuroendocrinology 2007; 85: 186-192
  • 103 Nishi M, Tanaka M, Matsuda K, Sunaguchi M, Kawata M. Visualization of glucocorticoid receptor and mineralocorticoid receptor interactions in living cells with GFP-based fluorescence resonance energy transfer. J Neurosci 2004; 24: 4918-4927
  • 104 Magariños AM, McEwen BS, Flügge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 1996; 16: 3534-3540
  • 105 De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998; 19: 269-301