Horm Metab Res 2013; 45(04): 308-313
DOI: 10.1055/s-0032-1323647
Humans, Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Osteoprotegerin Levels Decrease During Testosterone Therapy in Aging Men and are Associated with Changed Distribution of Regional Fat

L. Frederiksen
1   Department of Endocrinology, Odense University Hospital, Odense, Denmark
,
D. Glintborg
1   Department of Endocrinology, Odense University Hospital, Odense, Denmark
,
K. Højlund
1   Department of Endocrinology, Odense University Hospital, Odense, Denmark
,
D. M. Hougaard
2   Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen S, Denmark
,
K. Brixen
1   Department of Endocrinology, Odense University Hospital, Odense, Denmark
,
L. M. Rasmussen
3   Department of Biochemistry, Odense University Hospital, Odense, Denmark
,
M. Andersen
1   Department of Endocrinology, Odense University Hospital, Odense, Denmark
› Author Affiliations
Further Information

Publication History

received 04 April 2012

accepted 18 July 2012

Publication Date:
23 August 2012 (online)

Abstract

The cardiovascular effects of testosterone treatment are debated. Osteoprotegerin (OPG) is an independent marker of cardiovascular risk. We investigated the effect of testosterone therapy on OPG levels in aging men with low normal bioavailable testosterone levels. A randomized, double-blinded, placebo-controlled study of 6 months testosterone therapy (gel) in 38 men aged 60–78 years with bioavailable testosterone <7.3 nmol/l and waist circumference >94 cm was performed. Clinical evaluation, OPG, and C-reactive protein (CRP) measurements were carried out. Lean body mass (LBM), total fat mass, and bone mineral density (BMD) were established by dual X-ray absorptiometry. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were measured by magnetic resonance imaging. Power calculation was based on an increase in LBM during testosterone therapy and responders were defined as testosterone treated patients with increased LBM (Δ LBM positive), n=14. Data are presented as median (interquartile range). Testosterone therapy decreased total fat mass and SAT, whereas VAT was unchanged (n=38). OPG levels decreased during testosterone therapy (from 2.0 (1.9–2.5) to 1.9 (1.6–2.2) ng/ml, p<0.05 vs. placebo), whereas CRP levels were unchanged (n=38). In responders to testosterone therapy (n=14), ΔOPG levels were inversely associated with ΔSAT (r= − 0.60, p=0.03) and positively associated with ΔVAT (r=0.56, p=0.04). OPG levels decreased during testosterone therapy suggesting decreased cardiovascular risk. Decreased OPG levels were associated with changes in regional fat distribution and future studies are needed to further evaluate the association between OPG and regional fat mass distribution.

 
  • References

  • 1 Frederiksen L, Hojlund K, Hougaard DM, Brixen K, Andersen M. Testosterone therapy increased muscle mass and lipid oxidation in aging men. Age (Dordr) 2012; 1: 145-156
  • 2 Dandona P, Dhindsa S. Update: Hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab 2011; 9: 2643-2651
  • 3 Frederiksen L, Hojlund K, Hougaard DM, Mosbech TH, Larsen R, Flyvbjerg A, Frystyk J, Brixen K, Andersen M. Testosterone therapy decreased subcutaneous fat and adiponectin in ageing men. Eur J Endocrinol 2012; 3: 469-476
  • 4 Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab 2011; 8: 2341-2353
  • 5 Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 2: 165-176
  • 6 Nybo M, Rasmussen LM. Osteoprotegerin released from the vascular wall by heparin mainly derives from vascular smooth muscle cells. Atherosclerosis 2008; 1: 33-35
  • 7 D’Amelio P, Isaia G, Isaia GC. The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. J Endocrinol Invest 2009; 4 (Suppl) 6-9
  • 8 Davenport C, Ashley DT, O’Sullivan EP, Corley BT, Fitzgerald P, Agha A, Thompson CJ, O’Gorman DJ, Smith D. Identifying coronary artery disease in men with type 2 diabetes: osteoprotegerin, pulse wave velocity, and other biomarkers of cardiovascular risk. J Hypertens 2011; 12: 2469-2475
  • 9 Venuraju SM, Yerramasu A, Corder R, Lahiri A. Osteoprotegerin as a predictor of coronary artery disease and cardiovascular mortality and morbidity. J Am Coll Cardiol 2010; 19: 2049-2061
  • 10 Vik A, Mathiesen EB, Brox J, Wilsgaard T, Njolstad I, Jorgensen L, Hansen JB. Serum osteoprotegerin is a predictor for incident cardiovascular disease and mortality in a general population: the Tromso Study. J Thromb Haemost 2011; 4: 638-644
  • 11 Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 9468: 1415-1428
  • 12 Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 9: 1135-1143
  • 13 Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE. C-reactive protein: structural biology and host defense function. Clin Chem Lab Med 1999; 3: 265-270
  • 14 Kupelian V, Chiu GR, Araujo AB, Williams RE, Clark RV, McKinlay JB. Association of sex hormones and C-reactive protein levels in men. Clin Endocrinol (Oxf) 2010; 4: 527-533
  • 15 An JJ, Han DH, Kim DM, Kim SH, Rhee Y, Lee EJ, Lim SK. Expression and regulation of osteoprotegerin in adipose tissue. Yonsei Med J 2007; 5: 765-772
  • 16 Witasp A, Carrero JJ, Hammarqvist F, Qureshi AR, Heimburger O, Schalling M, Lindholm B, Nordfors L, Stenvinkel P. Expression of osteoprotegerin in human fat tissue; implications for chronic kidney disease. Eur J Clin Invest 2011; 5: 498-506
  • 17 Harslof T, Husted LB, Carstens M, Stenkjaer L, Sorensen L, Pedersen SB, Langdahl BL. The expression and regulation of bone-acting cytokines in human peripheral adipose tissue in organ culture. Horm Metab Res 2011; 7: 477-482
  • 18 Nielsen TL, Hagen C, Wraae K, Brixen K, Petersen PH, Haug E, Larsen R, Andersen M. Visceral and subcutaneous adipose tissue assessed by magnetic resonance imaging in relation to circulating androgens, sex hormone-binding globulin, and luteinizing hormone in young men. J Clin Endocrinol Metab 2007; 7: 2696-2705
  • 19 Frost M, Wraae K, Gudex C, Nielsen T, Brixen K, Hagen C, Andersen M. Chronic diseases in elderly men: underreporting and underdiagnosis. Age Ageing 2012; 2: 177-183
  • 20 Nybo M, Preil SR, Juhl HF, Olesen M, Yderstraede K, Gram J, Henriksen JE, Rasmussen LM. Rosiglitazone Decreases Plasma Levels of Osteoprotegerin in a Randomized Clinical Trial with Type 2 Diabetes Patients. Basic Clin Pharmacol Toxicol 2011; 6: 481-485
  • 21 Vermeulen A, Verdonck L, Kaufman JM. A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 1999; 10: 3666-3672
  • 22 Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, Lenzi A, Fabbri A. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf) 2005; 3: 280-293
  • 23 Altman DG. Comparing groups – continuous data. Practical statistics for medical research. 1 ed. 1991; 199-202
  • 24 Khosla S, Atkinson EJ, Dunstan CR, O’Fallon WM. Effect of estrogen versus testosterone on circulating osteoprotegerin and other cytokine levels in normal elderly men. J Clin Endocrinol Metab 2002; 4: 1550-1554
  • 25 Khosla S, Arrighi HM, Melton III LJ, Atkinson EJ, O’Fallon WM, Dunstan C, Riggs BL. Correlates of osteoprotegerin levels in women and men. Osteoporos Int 2002; 5: 394-399
  • 26 Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD. Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 2001; 7: 3162-3165
  • 27 Gannage-Yared MH, Fares F, Semaan M, Khalife S, Jambart S. Circulating osteoprotegerin is correlated with lipid profile, insulin sensitivity, adiponectin and sex steroids in an ageing male population. Clin Endocrinol (Oxf) 2006; 6: 652-658
  • 28 Pepene CE, Ilie IR, Marian I, Duncea I. Circulating osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand in polycystic ovary syndrome: relationships to insulin resistance and endothelial dysfunction. Eur J Endocrinol 2011; 1: 61-68
  • 29 Escobar-Morreale HF, Botella-Carretero JI, Martinez-Garcia MA, Luque-Ramirez M, Alvarez-Blasco F, San Millan JL. Serum osteoprotegerin concentrations are decreased in women with the polycystic ovary syndrome. Eur J Endocrinol 2008; 3: 225-232
  • 30 Jorgensen GM, Vind B, Nybo M, Rasmussen LM, Hojlund K. Acute hyperinsulinemia decreases plasma osteoprotegerin with diminished effect in type 2 diabetes and obesity. Eur J Endocrinol 2009; 1: 95-101
  • 31 Glintborg D, Andersen M. An update on the pathogenesis, inflammation, and metabolism in hirsutism and polycystic ovary syndrome. Gynecol Endocrinol 2010; 4: 281-296
  • 32 Svartberg J, Agledahl I, Figenschau Y, Sildnes T, Waterloo K, Jorde R. Testosterone treatment in elderly men with subnormal testosterone levels improves body composition and BMD in the hip. Int J Impot Res 2008; 4: 378-387
  • 33 Jensky NE, Criqui MH, Wright CM, Wassel CL, Alcaraz JE, Allison MA. The association between abdominal body composition and vascular calcification. Obesity (Silver Spring) 2011; 12: 2418-2424
  • 34 Bremer AA, Devaraj S, Afify A, Jialal I. Adipose tissue dysregulation in patients with metabolic syndrome. J Clin Endocrinol Metab 2011; 11: E1782-E1788
  • 35 Frederiksen L, Nielsen TL, Wraae K, Hagen C, Frystyk J, Flyvbjerg A, Brixen K, Andersen M. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men. J Clin Endocrinol Metab 2009; 10: 4010-4015
  • 36 Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA, D’Agostino Sr RB, O’Donnell CJ. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007; 1: 39-48
  • 37 Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 3: 797-802
  • 38 Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002; 6: 2784-2791
  • 39 Boden G, Cheung P, Mozzoli M, Fried SK. Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes. Metabolism 2003; 6: 753-759
  • 40 Gannage-Yared MH, Yaghi C, Habre B, Khalife S, Noun R, Germanos-Haddad M, Trak-Smayra V. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol 2008; 3: 353-359
  • 41 Basaria S, Coviello AD, Travison TG, Storer TW, Farwell WR, Jette AM, Eder R, Tennstedt S, Ulloor J, Zhang A, Choong K, Lakshman KM, Mazer NA, Miciek R, Krasnoff J, Elmi A, Knapp PE, Brooks B, Appleman E, Aggarwal S, Bhasin G, Hede-Brierley L, Bhatia A, Collins L, LeBrasseur N, Fiore LD, Bhasin S. Adverse events associated with testosterone administration. N Engl J Med 2010; 2: 109-122
  • 42 Fernandez-Balsells MM, Murad MH, Lane M, Lampropulos JF, Albuquerque F, Mullan RJ, Agrwal N, Elamin MB, Gallegos-Orozco JF, Wang AT, Erwin PJ, Bhasin S, Montori VM. Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J Clin Endocrinol Metab 2010; 6: 2560-2575
  • 43 Haddad RM, Kennedy CC, Caples SM, Tracz MJ, Bolona ER, Sideras K, Uraga MV, Erwin PJ, Montori VM. Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc 2007; 1: 29-39
  • 44 Wu FC, von Eckardstein A. Androgens and coronary artery disease. Endocr Rev 2003; 2: 183-217
  • 45 Muller M, Grobbee DE, den TI, Lamberts SW, van der Schouw YT. Endogenous sex hormones and metabolic syndrome in aging men. J Clin Endocrinol Metab 2005; 5: 2618-2623
  • 46 Ng MK, Liu PY, Williams AJ, Nakhla S, Ly LP, Handelsman DJ, Celermajer DS. Prospective study of effect of androgens on serum inflammatory markers in men. Arterioscler Thromb Vasc Biol 2002; 7: 1136-1141
  • 47 Singh AB, Hsia S, Alaupovic P, Sinha-Hikim I, Woodhouse L, Buchanan TA, Shen R, Bross R, Berman N, Bhasin S. The effects of varying doses of T on insulin sensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy young men. J Clin Endocrinol Metab 2002; 1: 136-143
  • 48 Kapoor D, Clarke S, Stanworth R, Channer KS, Jones TH. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol 2007; 5: 595-602
  • 49 Van PI, Braeckman L, De BD, De BG, Kaufman JM. Differential contribution of testosterone and estradiol in the determination of cholesterol and lipoprotein profile in healthy middle-aged men. Atherosclerosis 2003; 1: 95-102
  • 50 Kenny AM, Kleppinger A, Annis K, Rathier M, Browner B, Judge JO, McGee D. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc 2010; 6: 1134-1143
  • 51 Turner A, Chen TC, Barber TW, Malabanan AO, Holick MF, Tangpricha V. Testosterone increases bone mineral density in female-to-male transsexuals: a case series of 15 subjects. Clin Endocrinol (Oxf) 2004; 5: 560-566