Thromb Haemost 2003; 90(04): 564-566
DOI: 10.1055/s-0037-1613620
Editorial Focus
Schattauer GmbH

α-Enolase comes muscling in on plasminogen activation

Lindsey A. Miles
1   Department of Cell Biology, Division of Vascular Biology, The Scripps Research Institute La Jolla, CA, USA
,
Vincent Ellis
1   School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 22. Juli 2003

Accepted after revision 01. August 2003

Publikationsdatum:
09. Dezember 2017 (online)

 

 
  • References

  • 1 Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114-3124.
  • 2 Irigoyen JP, Munoz-Canoves P, Montero L. et al. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56: 104-32.
  • 3 Hoylaerts M, Rijken DC, Lijnen HR. et al. Kinetics of the activation of plasminogen by human tissue plasminogen activator. J Biol Chem 1982; 257: 2912-9.
  • 4 Plow EF, Herren T, Redlitz A. et al. The cell biology of the plasminogen system. FASEB J 1995; 9: 939-45.
  • 5 Bass R, Ellis V. Cellular mechanisms regulating non-haemostatic plasmin generation. Biochem. Soc. Trans 2002; 30: 189-94.
  • 6 Felez J, Chanquia CJ, Fabregas P. et al. Competition between plasminogen and tissue plasminogen activator for cellular binding sites. Blood 1993; 82: 2433-41.
  • 7 Ellis V. Cellular receptors for plasminogen activators - Recent advances. Trends Cardiovasc Med 1997; 7: 227-34.
  • 8 Mondino A, Resnati M, Blasi F. Structure and function of the urokinase receptor. Thromb Haemost 1999; 82 Suppl 1 19-22.
  • 9 Blasi F. Proteolysis, cell adhesion, chemo-taxis, and invasiveness are regulated by the uPA-u-PAR-PAI-1 system. Thromb Haemost 1999; 82: 298-304.
  • 10 Miskin R, Easton TG, Reich E. Plasminogen activator in chick embryo muscle cells: induction of enzyme by RSV, PMA and retinoic acid. Cell 1978; 15: 1301-12.
  • 11 Barlovatz-Meimon G, Frisdal E, Hantai D. et al. Slow and fast rat skeletal muscles differ in their plasminogen activator activities. Eur J Cell Biol 1990; 52: 157-62.
  • 12 Quax PH, Frisdal E, Pedersen N. et al. Modulation of activities and RNA level of the components of the plasminogen activation system during fusion of human myogenic satellite cells in vitro. Dev Biol. 1992; 151: 166-75.
  • 13 Bonavaud S. et al. Evidence of a non-conventional role for the urokinase tripartite complex (uPAR/uPA/PAI-1) in myogenic cell fusion. J Cell Sci 1997; 110: 1083-9.
  • 14 Chazaud B, Bonavaud S, Plonquet A. et al. Involvement of the [uPAR:uPA:PAI-1:LRP] complex in human myogenic cell motility. Exp Cell Res 2000; 258: 237-44.
  • 15 Munoz-Canoves P, Miralles F, Baiget M, Felez J. Inhibition of urokinase-type plasminogen activator (uPA) abrogates myogenesis in vitro. Thromb Haemost 1997; 77: 526-34.
  • 16 Lluis F, Roma J, Suelves M. et al. Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 2001; 97: 1703-11.
  • 17 Suelves M, Lopez-Alemany R, Lluis F. et al. Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood 2002; 99: 2835-44.
  • 18 Lopez-Alemany R. et al. Plasmin generation dependent on a-enolase-type plasminogen receptor is required for myogenesis. Thromb Haemost 2003; 90: 725-34.
  • 19 Lopez-Alemany R, Correc P, Camoin L, Burtin P. Purification of the plasmin receptor from human carcinoma cells and comparison to α-enolase. Thromb Res 1994; 75: 371-81.
  • 20 Miles LA, Dahlberg CM, Plescia J. et al. Role of cell-surface lysines in plasminogen binding to cells: Identification of α-enolase as a candidate plasminogen receptor. Biochemistry 1991; 30: 1682-91.
  • 21 Redlitz A, Fowler BJ, Plow EF, Miles LA. The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 1995; 227: 407-15.
  • 22 Hawley SB, Tamura T, Miles LA. Purification, cloning, and characterization of a profibrinolytic plasminogen-binding protein, TIP49a. J Biol Chem 2001; 276: 179-86.
  • 23 Lopez-Alemany R. et al. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against α-enolase. Am J Hematol 2003; 72: 234-42.
  • 24 Nakajima K, Hamanoue M, Takemoto N. et al. Plasminogen binds specifically to alpha-Enolase on rat neuronal plasma membrane. J Neurochemistry 1994; 63: 2048-57.
  • 25 Pancholi V, Fischetti VA. α-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 1998; 273: 14503-15.
  • 26 Wistow G, Piatigorsky J. Recruitment of enzymes as lens structural proteins. Science 1987; 236: 1554-6.
  • 27 Piatigorsky J. Multifunctional lens crystallins and corneal enzymes. More than meets the eye. Ann N Y Acad Sci 1998; 842: 7-15.
  • 28 Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999; 24: 8-11.
  • 29 Walsh JL, Keith TJ, Knull HR. Glycolytic enzyme interactions with tubulin and microtubules. Biochim Biophys Acta 1989; 999: 64-70.
  • 30 Johnstone SA, Waisman DM, Rattner JB. Eno-lase is present at the centrosome of HeLa cells. Exp Cell Res 1992; 202: 458-63.
  • 31 Rattner JB. et al. Autoantibodies to the centro-some (centriole) react with determinants present in the glycolytic enzyme enolase. J Immunol 1991; 146: 2341-4.
  • 32 Vinores SA, Herman MM, Rubinstein LJ. Electron-immunocytochemical localization of neuron-specific enolase in cytoplasm and on membranes of primary and metastatic cerebral tumours and on glial filaments of glioma cells. Histopathology 1986; 10: 891-908.
  • 33 Mathur RL, Reddy MC, Yee S. et al. Investigation of lens glycolytic enzymes: species distribution and interaction with supramolecular order. Exp Eye Res 1992; 54: 253-60.
  • 34 Brady ST, Lasek RJ. Nerve-specific enolase and creatine phosphokinase in axonal transport: soluble proteins and the axoplasmic matrix. Cell 1981; 23: 515-23.
  • 35 al Giery AG, Brewer JM. Characterization of the interaction of yeast enolase with polynucleotides. Biochim Biophys Acta 1992; 1159: 134-40.
  • 36 Subramanian A, Miller DM. Structural analysis of alpha-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 2000; 275: 5958-65.
  • 37 Keller A, Rouzeau JD, Farhadian F. et al. Differential expression of α- and β-enolase genes during rat heart development and hypertrophy. Am J Physiol Heart Circ Physiol 1995; 269: H1843-H1851.
  • 38 Fougerousse F, Edom-Voyard F, Merkulova T. et al. The muscle-specific enolase is an early marker of human myogenesis. J Muscle Res Cell Motil 2002; 22: 535-44.
  • 39 Ploplis VA, French EL, Carmeliet P. et al. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood 1998; 91: 2005-9.
  • 40 Matsushima K, Taguchi M, Kovacs EJ. et al. Intracellular localization of human monocyte associated interleukin 1 (IL1) activity and release of biologically active IL1 from mono-cytes by trypsin and plasmin. J Immunol 1986; 136: 2883-91.
  • 41 Keski-Oja J, Koli K. Enhanced production of plasminogen activator activity in human and murine keratinocytes by transforming growth factor- β1. J Invest Dermatol 1992; 99: 193-200.
  • 42 Couch CB, Strittmatter WJ. Rat myoblast fusion requires metalloendoprotease activity. Cell 1983; 32: 257-65.
  • 43 Guerin CW, Holland PC. Synthesis and secretion of matri-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn 1995; 202: 91-99.
  • 44 Yagami-Hiromasa T, Sato T, Kurisaki T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 1995; 377: 652-6.
  • 45 Gogos JA, Thompson R, Lowry W. et al. Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion. J Cell Biol 1996; 134: 837-47.
  • 46 Kherif S, Lafuma C, Dehaupas M. et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 1999; 205: 158-70.
  • 47 Lijnen HR, Van Hoef B, Lupu F. et al. Function of the plasminogen/plasmin and matrix metalloproteinase systems after vascular injury in mice with targeted inactivation of fibrinolytic system genes. Arterioscler Thromb Vasc Biol 1998; 18: 1035-45.
  • 48 Kobayashi H, Schmitt M, Goretzki L. et al. Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator. J Biol Chem 1991; 266: 5147-252.