Minim Invasive Neurosurg 2003; 46(1): 5-10
DOI: 10.1055/s-2003-37967
Original Article
OriginalArticle
© Georg Thieme Verlag Stuttgart · New York

Image-Guided Stereotaxy in the Interventional MRI

E.  Samset1 , H.  Hirschberg2
  • 1The Interventional Centre, The National Hospital of Norway, University of Oslo, Norway
  • 2Department of Neurosurgery, The National Hospital of Norway, University of Oslo, Norway
This study was partly founded by a grant from Norsk Parkinsonforening and from the Norwegian Research Council. We acknowledge the contributions from Anne Talsma and Marius Kintel in programming MR interface libraries and computer graphics routines. We also acknowledge the support of GTPrototyper, for providing the laser sintered skull.DisclosureES and HH are listed as co-inventors in a pending international patent application for the mechanical positioning tool and the accompanying direct targeting software solution described in this paper.
Further Information

Publication History

Publication Date:
17 March 2003 (online)

Abstract

Background: Stereotactic procedures employing frame-based systems and utilizing pre-operative MR or CT have several shortcomings such as long procedure time, patient discomfort and transport, poor fail-safe capabilities and targeting inaccuracies due to brain shift. Conducting all procedural steps in an interventional MRI has the potential of alleviating some of these deficiencies.

Methods: A stereotactic system consisting of a skull-mounted mechanical positioning device and customized navigation software has been developed. The accuracy of this system was tested within an interventional MRI employing a skull phantom.

Results: The mean distance between the targets hit and the planned target coordinates was 0.70 mm ± 0.3 mm with a maximum distance of 1.3 mm.

Interpretation: The results indicate that the proposed stereotactic system can be used for stereotactic procedures in the interventional MRI.

  • 1 Alexander III E, Kooy H M, van Herk M, Schwartz M, Barnes P D, Tarbell N, Mulkern R V, Holupka E J, Loeffler J S. Magnetic resonance image-directed stereotactic neurosurgery: Use of image fusion with computerized tomography to enhance spatial accuracy.  J Neurosurg. 1995;  83 271-276
  • 2 Alexander III E, Moriarty T M, Kikinis R, Jolesz F A. Innovations in minimalism: Intraoperative MRI.  Clinical Neurosurgery. 1996;  338 52
  • 3 Berry E, Brown J M, Connell M, Craven C M, Efford N D, Radjenovic A, Smith M A. Preliminary experience with medical applications of rapid prototyping by selective laser sintering.  Med Engl Phys. 1997;  19(1) 90-96
  • 4 Carter D A, Parsai E I, Ayyangar K M. Accuracy of magnetic resonance imaging stereotactic coordinates with the Cosman-Roberts-Wells frame. Stereotact Funct.  Neurosurg. 1999;  72(1) 35-46
  • 5 Cohen D S, Lustgarten J H, Miller E, Khandji A G, Goodman R R. Effects of coregistration of MR to CT images on MR stereotactic accuracy.  J Neurosurg. 1995;  82(5) 772-779
  • 6 Galloway Jr R L, Maciunas R J, Latimer J W. The accuracies of four stereotactic frame systems: an independent assessment.  Biomed Instrum Technol. 1991;  25(6) 457-460
  • 7 Grunert P. Accuarcy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging. Part II. Analysis of matrix-based coordinate transformation.  Neurosurg Rev. 1999;  22(4) 188-203
  • 8 Hirschberg H, Samset E. Intraoperative image-directed dye marking of tumor margins.  Minim Invasive Neurosurg. 1999;  42(3) 123-127
  • 9 Levy R A, Guduri S, Crawford R H. Preliminary experience with selective laser sintering models of the human temporal bone.  AJNR Am J Neuroradiol. 1994;  15(3) 473-477
  • 10 Maciunas R J, Galloway Jr R L, Latimer J W. The application accuracy of stereotactic frames.  Neurosurgery. 1994;  35(4) 682-694
  • 11 Moriarty T M, Kikinis R, Jolesz F A, Black P M, Alexander III E. Magnetic resonance imaging therapy. Intraoperative MR imaging.  Neurosurgery Clinics of North America. 1996;  7(2) 323-331
  • 12 Nabavi A, Black P M, Gering D T, Westin C F, Mehta V, Pergolizzi Jr R S, Ferrant M, Warfield S K, Hata N, Schwartz R B, Wells III W M, Kikinis R, Jolesz F A. Serial intraoperative magnetic resonance imaging of brain shift.  Neurosurgery. 2001;  48(4) 787-797
  • 13 Nauta H J. Error assessment during “image guided” and “imaging interactive” stereotactic surgery.  Comput Med Imaging Graph. 1994;  18(4) 279-287
  • 14 Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R. Quantification of, and visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging.  Neurosurgery. 2000;  47(5) 1070-1079
  • 15 Page R D, Miles J B. Validation of CT targeting for functional stereotaxis with postoperative magnetic resonance imaging.  Br J Neurosurg. 1994;  8(4) 461-467
  • 16 Samset E, Hirschberg H. Neuronavigation in intraoperative MRI.  Computer Aided Surgery. 1999;  4 200-207
  • 17 Samset E, Talsma A, Kintel M, Elle O J, Aurdal L, Hirschberg H, Fosse E. A virtual environment for navigating and controlling intraoperative magnetic resonance images.  J Comput Aided Surg. 2002;  7 187-196
  • 18 Starr P A, Vitek J L, DeLong M, Bakay R A. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.  Neurosurgery. 1999;  44(2) 303-313
  • 19 Suess O, Kombos T, Suess S, Stendel R, Pietilae T, Brock M. The influence of intra-operative brain shift on continuous cortical stimulation during surgery in the motor cortex - an illustrative case report.  Acta Neurochir (Wien). 2001;  143(6) 621-623
  • 20 Wirtz C R, Tronnier V M, Bonsanto M M, Knauth M, Staubert A, Albert F K, Kunze S. Image-guided neurosurgery with intraoperative MRI: Update of frameless stereotaxy and radicality control.  Stereotact Funct Neurosurg. 1997;  68 39-43

E. Samset,M.Sc. 

The Interventional Centre · Rikshospitalet

0027 Oslo

Norway ·

Phone: +47-23-070-111

Fax: +47-23-070-110

Email: eigil.samset@klinmed.uio.no

    >