Seminars in Neurosurgery 2003; 14(1): 049-054
DOI: 10.1055/s-2003-41149
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Treatment Strategies for Cervical Adjacent Segment Disease after Cervical Fusion

Joseph S. Cheng1 , Dennis J. Maiman2,3 , M. Renée Chambers1
  • 1Vanderbilt University, Nashville, Tennessee
  • 2Medical College of Wisconsin, Milwaukee, Wisconsin
  • 3Veterans' Affairs Medical Center, Milwaukee, Wisconsin
Further Information

Publication History

Publication Date:
06 August 2003 (online)

ABSTRACT

Segmental degenerative changes adjacent to prior cervical spine arthrodesis have been frequently reported. When these degenerative changes are associated with the development of new neurological symptoms, such as radiculopathy or myelopathy, the clinical diagnosis of adjacent segment disease is made. A multitude of factors have been postulated to influence adjacent segment degeneration. These include the length of the fusion, loss of normal alignment, pre-existing spondylosis at the adjacent regions, and the stiffness of the implant. Many of these studies have been based on biomechanical evaluations of the implant-biological milieu, but the clinical aspects of the patient's symptomatology have led to questions regarding the role of degenerative spondylosis and the subsequent development of adjacent segment disease. This article will review the literature regarding adjacent segment disease after cervical fusion and discuss treatment strategies, including pre-emptive treatment based on defining two subsets of this patient population.

REFERENCES

  • 1 Goffin J, van Loon J, Van Calenbergh F, Plets C. Long-term results after anterior cervical fusion and osteosynthetic stabilization for fractures and/or dislocations of the cervical spine.  J Spinal Disord . 1995;  8 500-508
  • 2 Javedan S, Dickman C. Causes of adjacent-segment disease after spinal fusion.  Lancet . 1999;  354 530-531
  • 3 Hilibrand A, Yoo J, Carlson G, Bohlman H. The success of anterior cervical arthrodesis adjacent to a previous fusion.  Spine . 1997;  22 1574-1579
  • 4 Katsuura A, Hukuda S, Saruhashi Y, Mori K. Kyphotic malalignment after anterior cervical fusion is one of the factors promoting the degenerative process in adjacent intervertebral levels.  Eur Spine J . 2001;  10 320-324
  • 5 Hilibrand A, Carlson G, Palumbo M, Jones P, Bohlman H. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis.  J Bone Joint Surg . 1999;  81 519-528
  • 6 Kawakami M, Tamaki T, Yoshida M, Hayashi N, Ando M, Yamada H. Axial symptoms and cervical alignments after cervical anterior spinal fusion for patients with cervical myelopathy.  J Spinal Disord . 1999;  12 50-56
  • 7 Heller J G, Silcox 3rd H D, Sutterlin 3rd E C. Complications of posterior cervical plating.  Spine . 1995;  20 2442-2448
  • 8 Grob D, Dvorak J, Panjabi M, Antinnes J. The role of plate and screw fixation in occipitocervical fusion in rheumatoid arthritis.  Spine . 1994;  19 2545-2551
  • 9 Wada E, Suzuki S, Kanazawa A, Matsuoka T, Miyamoto S, Yonenobu K. Subtotal corpectomy versus laminoplasty for multilevel cervical spondylotic myelopathy: a long-term follow-up study over 10 years.  Spine . 2001;  26 1443-1447
  • 10 Wu W, Thuomas K, Hedlund R, Leszniewski W, Vavruch L. Degenerative changes following anterior cervical discectomy and fusion evaluated by fast spin-echo MR imaging.  Acta Radiol . 1996;  37 614-617
  • 11 Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K. Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy.  Spine . 1993;  18 2167-2173
  • 12 Rohlmann A, Calisse J, Bergmann G, Weber U. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs.  Spine . 1999;  24 1192-1195
  • 13 Benzel E. Biomechanics of Spine Stabilization. Chicago, IL: AANS Pr 2001: 171-188
  • 14 Wang J, Zou D, Yuan H, Yoo J. A biomechanical evaluation of graft loading characteristics for anterior cervical discectomy and fusion. A comparison of traditional and reverse grafting techniques.  Spine . 1998;  23 2450-2454
  • 15 Antoniou J, Pike G, Steffen T. et al . Quantitative magnetic resonance imaging in the assessment of degenerative disc disease.  Magn Reson Med . 1998;  40 900-907
  • 16 Krieg J, Clark C, Goetz D. Cervical spine arthrodesis in rheumatoid arthritis: a long-term follow-up.  Yale J Biol Med . 1993;  66 257-262
  • 17 Kelsey J. Epidemiology of radiculopathies.  Adv Neurol . 1978;  19 385-398
  • 18 Lestini W, Wiesel S. The pathogenesis of cervical spondylosis.  Clin Orthop . 1989;  239 69-93
  • 19 Kumaresan S, Yoganandan N, Pintar F, Maiman D, Goel V. Contribution of disc degeneration to osteophyte formation in the cervical spine: a biomechanical investigation.  J Orthop Res . 2001;  19 977-984
  • 20 Whitehill R, Moran D, Fechner R. et al . Cervical ligamentous instability in a canine in vivo model.  Spine . 1987;  12 959-963
  • 21 Maiman D, Kumaresan S, Yoganandan N, Pintar F. Biomechanical effect of anterior cervical spine fusion on adjacent segments.  Biomed Mater Eng . 1999;  9 27-38
  • 22 Nathan H. Osteophytes of the vertebral column.  J Bone Joint Surg . 1962;  44 243-268
  • 23 Brown T, Pedersen D, Gray M, Brand R, Rubin C. Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach.  J Biomech . 1990;  23 893-905
  • 24 Tobin W. An atlas of the comparative anatomy of the upper end of the femur. I.  Further evidence and confirmation of Wolff's Law of the femur. I. Further evidence and confirmation of Wolff's Law of Bone Transformation. Clin Orthop . 1968;  56 83-103
  • 25 Wolff J. Das Gezetz der Transformation der Knochen. Berlin, Germany: 1892
  • 26 Lipson S, Muir H. Vertebral osteophyte formation in experimental disc degeneration. Morphologic and proteoglycan changes over time.  Arthritis Rheum . 1980;  23 319-324
  • 27 Natarajan R, Chen B, An H, Andersson G. Biomechnical analysis of the cervical discectomy and fusion using a three segment model. Pittsburgh, PA: American Soc Biomechanics 1999
  • 28 Fuller D, Kirkpatrick J, Emery S, Wilber R, Davy D. A kinematic study of the cervical spine before and after segmental arthrodesis.  Spine . 1998;  23 1649-1656
  • 29 Shimamoto N, Cunningham B, Dmitriev A, Minami A, McAfee P. Biomechanical evaluation of stand-alone interbody fusion cages in the cervical spine.  Spine . 2001;  26 432-436
  • 30 Weinhoffer S, Guyer R, Herbert M, Griffith S. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study.  Spine . 1995;  20 526-531
  • 31 Smith D, Lowe T, O'Brien M. et al .Posterior spinal fusion versus 360 fusion in a calf spine model: a biomechanical analysis of motion at the instrumented and adjacent uninstrumented segments. 2000. Available at: http://SpineUniverse. com/displayarticle.php/article379.html. Accessed August 2002
  • 32 Natarajan R, Yoon S, An H, Andersson G. Sagittal alignment of ACDF influences adjacent disc biomechanics. In: , ed. San Francisco, CA: Orthopaedic Research Soc; 2001
  • 33 Kumar M, Baklanov A, Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion.  Eur Spine J . 2001;  10 314-319
  • 34 Natarajan R, Chen B, An H, Andersson G. Anterior cervical fusion: a finite element model study on motion segment stability including the effect of osteoporosis.  Spine . 2000;  25 955-961
  • 35 Rohlmannt A, Claes L, Bergmannt G, Graichen F, Neef P, Wilke H. Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises.  Ergonomics . 2001;  44 781-794
  • 36 Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin W, Watkins R. Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography.  Spine . 1987;  12 276-281
  • 37 Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou T, Nakanishi K. Strain on intervertebral discs after anterior cervical decompression and fusion.  Spine . 1999;  24 670-675
  • 38 Kerttula L, Kurunlahti M, Jauhiainen J, Koivula A, Oikarinen J, Tervonen O. Apparent diffusion coefficients and T2 relaxation time measurements to evaluate disc degeneration. A quantitative MR study of young patients with previous vertebral fracture.  Acta Radiol . 2001;  42 585-591
  • 39 Lipson S, Muir H. Volvo Award in Basic Science. Proteoglycans in experimental intervertebral disc degeneration.  Spine . 1981;  6 194-210
  • 40 Iseda T, Goya T, Nakano S, Kodama T, Moriyama T, Wakisaka S. Serial changes in signal intensities of the adjacent discs on T2-weighted sagittal images after surgical treatment of cervical spondylosis: anterior interbody fusion versus expansive laminoplasty.  Acta Neurochirurg (Wien) . 2001;  143 707-710
  • 41 Kawakami M, Tamaki T, Iwasaki H, Yoshida M, Ando M, Yamada H. A comparative study of surgical approaches for cervical compressive myelopathy.  Clin Orthop . 2000;  381 129-136
  • 42 Brodke D, Gollogly S, Alexander Mohr R, Nguyen B, Dailey A, Bachus A. Dynamic cervical plates: biomechanical evaluation of load sharing and stiffness.  Spine . 2001;  26 1324-1329
  • 43 Wigfield C, Gill S, Nelson R, Langdon I, Metcalf N, Robertson J. Influence of an artificial cervical joint compared with fusion on adjacent-level motion in the treatment of degenerative cervical disc disease.  J Neurosurg . 2002;  96 (suppl 1) S17-S21
    >