Thromb Haemost 2003; 90(06): 978-985
DOI: 10.1160/TH03-05-0302
Theme Issue Article
Schattauer GmbH

Regulatory roles of androgens in cutaneous wound healing

Stephen C. Gilliver
1   Division of Immunology, Microbiology, Development and Repair, School of Biological Sciences, University of Manchester, UK
,
Fred Wu
1   Division of Immunology, Microbiology, Development and Repair, School of Biological Sciences, University of Manchester, UK
,
Gillian S. Ashcroft
1   Division of Immunology, Microbiology, Development and Repair, School of Biological Sciences, University of Manchester, UK
› Institutsangaben
Financial support: This work was supported by The Wellcome Trust
Weitere Informationen

Publikationsverlauf

Received 19. Mai 2003

Accepted after revision 08. Juli 2003

Publikationsdatum:
05. Dezember 2017 (online)

Summary

Although the effects of androgens on wound healing are poorly characterised, the androgen receptor is expressed by inflammatory cells, keratinocytes and fibroblasts during wound healing, suggesting that androgens may regulate inflammatory and/or repair processes. In fact, it appears that endogenous testosterone inhibits wound healing and promotes inflammation since castration of male mice or systemic treatment with the androgen receptor antagonist flutamide accelerates cutaneous wound healing and reduces the inflammatory response. The aim of this review is to summarise our current knowledge about the regulation of tissue repair processes by androgens.

 
  • References

  • 1 Biason-Lauber A. Molecular medicine of steroid hormone biosynthesis. Mol Aspects Med 1998; 19: 155-220.
  • 2 Munabi AK, Feuillan P, Staton RC. et al. Adrenal steroid responses to continuous intravenous adrenocorticotropin infusion compared to bolus injection in normal volunteers. J Clin Endocrinol Metab 1986; 63: 1036-40.
  • 3 Labrie F, Luu-The V, Labrie C. et al. Intra-crinology and the skin. Horm Res 2000; 54: 218-29.
  • 4 Hennebold JD, Daynes RA. Regulation of macrophage dehydroepiandrosterone sulfate metabolism by inflammatory cytokines. Endocrinology 1994; 1351: 67-75.
  • 5 Milewich L, Shaw CB, Sontheimer RD. Steroid metabolism by epidermal keratinocytes. Ann NY Acad Sci 1988; 548: 66-89.
  • 6 Chen W Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol 2002; 119: 992-1007.
  • 7 Sawaya ME, Penneys NS. Immunohistochemical distribution of aromatase and 3β–hydroxysteroid dehydrogenase in human hair follicle and sebaceous gland. J Cutan Pathol 1992; 19: 309-14.
  • 8 Thiboutot D, Martin P, Volikos L. et al. Oxidative activity of the type 2 isozyme of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) predominates in human sebaceous glands. J Invest Dermatol 1998; 111: 390-5.
  • 9 Nguyen QH, Chen T, Wang X. et al. Finasteride inhibits 5α-reductase activity in human dermal fibroblasts: prediction of its therapeutic application in androgen-related skin diseases. Int J Dermatol 1995; 34: 720-5.
  • 10 Eicheler W, Dreher M, Hoffmann R. et al. Immunohistochemical evidence for differential distribution of 5α-reductase isoenzymes in human skin. Br J Dermatol 1995; 133: 371-6.
  • 11 Thiboutot D, Gilliland K, Light J. et al. Androgen metabolism in sebaceous glands from subjects with and without acne. Arch Dermatol 1999; 135: 1041-5.
  • 12 Horton R, Pasupuletti V, Antonipillai I. Androgen induction of steroid 5α-reductase may be mediated via insulin-like growth factor-1. Endocrinology 1993; 133: 447-51.
  • 13 Wahe M, Antonipillai I, Horton R. Effects of transforming growth factor β and epidermal growth factor on steroid 5α-reductase activity in genital skin fibroblasts. Mol Cell Endocrinol 1993; 98: 55-9.
  • 14 Lamberigts G, Dierickx P, De Moor P. et al. Comparison of the metabolism and receptor binding of testosterone and 17 beta-hydroxy-5 alpha-androstan-3-one in normal skin fibroblast cultures: influence of origin and passage number. J Clin Endocrinol Metab 1979; 48: 924-30.
  • 15 Deslypere JP, Vermeulen A. Aging and tissue androgens. J Clin Endocrinol Metab 1981; 53: 430-4.
  • 16 Mauvais-Jarvis P. Regulation of androgen receptor and 5α-reductase in the skin of normal and hirsute women. Clin Endocrinol Metab 1986; 15: 307-17.
  • 17 Dijkstra AC, Goos MAA, Cunliffe WJ. et al. Is increased 5α-reductase activity a primary phenomenon in androgen dependent skin disorders?. J Invest Dermatol 1987; 89: 87-92.
  • 18 Rittmaster RS, Uno H, Povar ML. et al. The effects of N, N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide, a 5 alpha-reductase inhibitor and antiandrogen, on the development of baldness in the stumptail macaque. J Clin Endocrinol Metab 1987; 65: 188-93.
  • 19 Vinson GP. Hormone Receptors and Signal Trans-duction. In: Stress, Stress Hormones and the Immune System John Wiley & Sons. 1997: 95-126.
  • 20 Brinkmann AO, Blok LJ, de Ruiter PE. et al. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 1999; 69: 307-13.
  • 21 Benten WP, Lieberherr M, Sekeris CE. et al. Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells. FEBS Lett 1997; 407: 211-4.
  • 22 Benten WPM, Lieberherr M, Stamm O. et al. Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 1999; 10: 3113-23.
  • 23 Kuiper GG, Brinkmann AO. Phosphotryptic peptide analysis of the human androgen receptor: detection of a hormone-induced phospho-peptide. Biochemistry 1995; 34: 1851-7.
  • 24 Gaughan L, Logan IR, Cook S. et al. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 2002; 277: 25904-13.
  • 25 Langley E, Zhou ZX, Wilson EM. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J Biol Chem 1995; 270: 29983-90.
  • 26 Liang T, Hoyer S, Yu R. et al. Immunocyto-chemical localization of androgen receptors in human skin using monoclonal antibodies against the androgen receptor. J Invest Dermatol 1993; 100: 663-6.
  • 27 Chen W, Zouboulis CC, Fritsch M. et al. Evidence of heterogeneity and quantitative differences of the type 1 5α-reductase expression in cultured human skin cells – evidence of its presence in melanocytes. J Invest Dermatol 1998; 110: 84-9.
  • 28 Hatakeyama H, Nishizawa M, Nakagawa A. et al. Testosterone inhibits tumor necrosis factor-α-induced vascular cell adhesion molecule expression in human aortic endothelial cells. FEBS Lett 2002; 530: 129-32.
  • 29 Liao G, Chen LY, Zhang A. et al. Regulation of Androgen Receptor Activity by the Nuclear Receptor Corepressor SMRT. J Biol Chem 2003; 278: 5052-61.
  • 30 Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci USA 1996; 93: 5517-21.
  • 31 Bubulya A, Wise SC, Shen XQ. et al. c-Jun can mediate androgen receptor-induced transactivation. J Biol Chem 1996; 271: 24583-9.
  • 32 Schneikert J, Peterziel H, Defossez P-A. et al. Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J Biol Chem 1996; 271: 23907-13.
  • 33 Debes JD, Schmidt LJ, Huang H. et al. p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 2002; 62: 5632-6.
  • 34 Kang H-Y, Huang K-E, Chang SY. et al. Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J Biol Chem 2002; 277: 43749-56.
  • 35 Chipuk JE, Cornelius SC, Pultz NJ. et al. The androgen receptor represses transforming growth factor-β signaling through interaction with Smad3. J Biol Chem 2002; 277: 1240-8.
  • 36 Peterziel H, Mink S, Schonert A. et al. Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 1999; 18: 6322-9.
  • 37 Delfino FJ, Boustead JN, Fix C. et al. NF-κB and TNF-α stimulate androgen receptor expression in Sertoli cells. Mol Cell Endocrinol 2003; 201: 1-12.
  • 38 Faber PW, van Rooij HC, Schipper HJ. et al. Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem 1993; 268: 9296-301.
  • 39 Lin DL, Whitney MC, Yao Z. et al. Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 2001; 7: 1773-81.
  • 40 Hall RE, Tilley WD, McPhaul MJ. et al. Regulation of androgen receptor gene expression by steroids and retinoic acid in human breast-cancer cells. Int J Cancer 1992; 52: 778-84.
  • 41 Zhao XY, Ly LH, Peehl DM. et al. Induction of androgen receptor by 1α, 25-dihydroxyvitamin D3 and 9-cis retinoic acid in LNCaP human prostate cancer cells. Endocrinology 1999; 140: 1205-12.
  • 42 Gad YZ, Berkovitz GD, Migeon CJ. et al. Studies of up-regulation of androgen receptors in genital skin fibroblasts. Mol Cell Endocrinol 1988; 57: 205-13.
  • 43 Wiren KM, Zhang X, Chang C. et al. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells. Endocrinology 1997; 138: 2291-300.
  • 44 Bläuer M, Vaalasti A, Pauli SL. et al. Location of androgen receptor in human skin. J Invest Dermatol 1991; 97: 264-8.
  • 45 Ruizeveld de Winter JA, Trapman J, Vermey M. et al. Androgen receptor expression in human tissues: an immunohistochemi-cal study. J Histochem Cytochem 1991; 39: 927-36.
  • 46 Benten WPM, Stephan C, Wunderlich F. B cells express intracellular but not surface receptors for testosterone and estradiol. Steroids 2002; 67: 647-54.
  • 47 Khetawat G, Farady N, Nealen ML. et al. Human megakaryocytes and platelets contain the estrogen receptor β and androgen receptor (AR): testosterone regulates AR expression. Blood 2000; 95: 2289-96.
  • 48 Mantalaris A, Panoskaltsis N, Sakai Y. et al. Localization of androgen receptor expression in human bone marrow. J Pathol 2001; 193: 361-6.
  • 49 Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 2002; 110: 615-24.
  • 50 Shelley WB, Hurley HJ. The physiology of the human axillary apocrine sweat gland. J Invest Dermatol 1953; 20: 285-95.
  • 51 Ebling FJ. The action of testosterone on the sebaceous glands and epidermis in castrated and hypophysectomized male rats. J Endocrinol 1957; 15: 297-306.
  • 52 Ebling FJG. Hair follicles and associated glands are androgen targets. J Clin Endocrinol Metab 1986; 15: 319-39.
  • 53 Black MM, Shuster S, Bottoms E. Osteoporosis, skin collagen and androgen. Br Med J 1970; 4: 773-4.
  • 54 Inui S, Fukuzato Y, Nakajima T. et al. Androgen-inducible TGF-β1 from balding dermal papilla cells inhibits epithelial cell growth: a clue to understanding paradoxical effects of androgen on human hair growth. FASEB J 2002; 16: 1967-9.
  • 55 Itami S, Kurata S, Takayasu S. Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor-I from dermal papilla cells. Biochem Biophys Res Commun 1995; 212: 988-94.
  • 56 Chanda S, Lee Robinette C, Couse JF. et al. 17β-Estradiol and ICI-182780 regulate the hair follicle cycle in mice through an estrogen receptor-α pathway. Am J Physiol Endocrinol Metab 2000; 278: E202-10.
  • 57 Hsia SL, Voigt W. Inhibition of dihydrotestosterone formation: an effective means of blocking androgen formation in hamster sebaceous gland. J Invest Dermatol 1974; 62: 224-7.
  • 58 Pochi PE, Strauss JS. Endocrinologic control of the development and activity of the human sebaceous gland. J Invest Dermatol 1974; 62: 191-201.
  • 59 Downing DT, Stewart ME, Strauss JS. Changes in sebum production and the sebaceous gland. Dermatol Clin 1986; 4: 419-22.
  • 60 Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol 1986; 15: 571-85.
  • 61 Messenger AG. The control of hair growth: an overview. J Invest Dermatol 1993; 101: 4S-9S.
  • 62 Imperato-McGinley J, Guerrero L, Gautier T. et al. Steroid 5α-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974; 186: 1213-5.
  • 63 Ashcroft GS, Greenwell-Wild T, Horan MA. et al. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol 1999; 155: 1137-46.
  • 64 Taylor RJ, Taylor AD, Smyth JV. Using an artificial neural network to predict healing times and risk factors for venous leg ulcers. J Wound Care 2002; 11: 101-5.
  • 65 Demling RH, Orgill DP. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J Crit Care 2000; 15: 12-7.
  • 66 Li ZG, Danis VA, Brooks PM. Effect of gonadal steroids on the production of IL-1 and IL-6 by blood mononuclear cells in vitro . Clin Exp Rheumatol 1993; 11: 157-62.
  • 67 Angele MK, Knoferl MW, Ayala A. et al. Testosterone and estrogen differently effect Th1 and Th2 cytokine release following trauma-haemorrhage. Cytokine 2001; 16: 22-30.
  • 68 Nikolaevich KN, Ivanovich SJ, Victorovich SS. Major reproduction hormones as regulators of cell-to-cell interactions in humoral immune responses. Brain Behav Immun 1991; 5: 149-61.
  • 69 Verthelyi D. Sex hormones as immunomodulators in health and disease. Int Immunopharmacol 2001; 1: 983-93.
  • 70 Enosawa S, Hirasawa K. Sex-associated differences in the survival of skin grafts in rats. Enhancement of cyclosporine immunosuppression in male compared with female recipients. Transplantation 1989; 47: 933-7.
  • 71 McCashland TM, Brand R, Lyden E. et al. Gender differences in colorectal polyps and tumors. Am J Gastroenterol 2001; 96: 882-6.
  • 72 Srinivasan R, Buchweitz JP, Ganery PE. Alteration by flutamide of neutrophil response to stimulation. Implications for tissue injury. Biochem Pharmacol 1997; 53: 1179-85.
  • 73 Békési G, Réka K, Várbíró S. et al. In vitro effects of different steroid hormones on super-oxide anion production of human neutrophil granulocytes. Steroids 2000; 65: 889-94.
  • 74 Mohan PF, Jacobson MS. Inhibition of macrophage superoxide generation by dehydroepiandrosterone. Am J Med Sci 1993; 306: 10-5.
  • 75 Chao TC, Van Alten PJ, Walter RJ. Steroid sex hormones and macrophage function: modulation of reactive oxygen intermediates and nitrite release. Am J Reprod Immunol 1994; 32: 43-52.
  • 76 Savita Rai U. Sex steroid hormones modulate the activation of murine peritoneal macrophages: receptor-mediated modulation. Comp Biochem Physiol 1998; 119: C199-204.
  • 77 Miyagi M, Morishita M, Iwamoto Y. Effects of sex hormones on production of prostaglan-din E2 by human peripheral monocytes. J Periodontol 1993; 64: 1075-8.
  • 78 Kanda N, Tsuchida T, Tamaki K. Testosterone suppresses anti-DNA antibody production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1703-11.
  • 79 Mori H, Sawairi M, Itoh N. et al. Effects of sex steroids on cell differentiation and interleukin-1 beta production in the human promyelocytic leukemia cell line HL-60. J Reprod Med 1992; 37: 871-8.
  • 80 Zhang X, Wang L-Y, Jiang T-Y. et al. Effects of testosterone and 17-β-estradiol on TNF-α -induced E-selectin and VCAM-1 expression in endothelial cells. Analysis of the underlying receptor pathways. Life Sci 2002; 71: 15-29.
  • 81 McCrohon JA, Jessup W, Handelsman DJ. et al. Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1. Circulation 1999; 99: 2317-22.
  • 82 Mukherjee TK, Dinh H, Chaudhuri G. et al. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci USA 2002; 99: 4055-60.
  • 83 van Kesteren PJ, Kooistra T, Lansink M. et al. The effects of sex steroids on plasma levels of marker proteins of endothelial cell functioning. Thromb Haemost 1998; 79: 1029-33.
  • 84 Ajayi AA, Matsuda K, Schror K. et al. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 1995; 91: 2742-7.
  • 85 Matsuda K, Ruff A, Morinelli TA. et al. Testosterone increases thromboxane A2 receptor density and responsiveness in rat aortas and platelets. Am J Physiol 1994; 267: H887-93.
  • 86 Sordello S, Bertrand N, Plouët J. Vascular endothelial growth factor is up-regulated in vitro and in vivo by androgens. Biochem Biophys Res Commun 1998; 251: 287-90.
  • 87 Franck-Lissbrant I, Haggstrom S, Damber JE. et al. Testosterone stimulates angiogenesis and vascular regrowth in the ventral prostate in castrated adult rats. Endocrinology 1998; 139: 451-6.
  • 88 Lansink M, Koolwijk P, van Hinsbergh V. et al. Effect of steroid hormones and retinoids on the formation of capillary-like tubular structures of human microvascular endothelial cells in fibrin matrices is related to urokinase expression. Blood 1998; 92: 927-38.
  • 89 Somjen D, Kohen F, Jaffe A. et al. Effects of gonadal steroids and their antagonists on DNA in human vascular cells. Hypertension 1998; 32: 39-45.
  • 90 Ling S, Dai A, Williams I MR. et al. Testosterone (T) enhances apoptosis-related damage in human vascular endothelial cells. Endocrinology 2002; 143: 1119-25.
  • 91 Liu J, Wu S, Wei H. et al. Effects of sex hormones and their balance on the proliferation of vascular endothelial cells. Horm Res 2002; 58: 16-20.
  • 92 Pan HJ, Uno H, Inui S. et al. Roles of testosterone in the growth of keratinocytes through bald frontal dermal papilla cells. Endocrine 1999; 11: 321-7.
  • 93 Planz B, Wang Q, Kirsley SD. et al. Regulation of keratinocyte growth factor receptor and androgen receptor in epithelial cells of the human prostate. J Urol 2001; 166: 678-83.
  • 94 Liao X, Thrasher JB, Pelling J. et al. Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology 2003; 144: 1656-63.
  • 95 Ford LC, King DF, Lagasse LD. et al. Increased androgen binding in keloids: a preliminary communication. J Dermatol Surg Oncol 1983; 9: 545-7.
  • 96 Antus B, Yao Y, Liu S. et al. Contribution of androgens to chronic allograft nephropathy is mediated by dihydrotestosterone. Kidney Int 2001; 60: 1955-63.