Vet Comp Orthop Traumatol 2009; 22(05): 356-362
DOI: 10.3415/VCOT-08-07-0064
Original Research
Schattauer GmbH

Spontaneous recovery of experimental valgus deformity in lambs

P. Meynaud-Collard
1   Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Laboratoire de Chirurgie Expérimentale du Tissu Osseux et Cartilagineux, Unité de Chirurgie, Toulouse Cedex, France
,
E. Asimus
1   Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Laboratoire de Chirurgie Expérimentale du Tissu Osseux et Cartilagineux, Unité de Chirurgie, Toulouse Cedex, France
,
D. Mathon
1   Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Laboratoire de Chirurgie Expérimentale du Tissu Osseux et Cartilagineux, Unité de Chirurgie, Toulouse Cedex, France
,
R. Darmana
2   INSERM U825, CHU Purpan, Toulouse Cedex 3, France
,
P. Frayssinet
3   Urodelia SA, Le Gaillard, Route de Saint Thomas, Saint Lys, France
,
J.-Ph. Cahuzac
4   Hôpital des enfants, Toulouse cedex 9, France
,
A. Autefage
1   Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Laboratoire de Chirurgie Expérimentale du Tissu Osseux et Cartilagineux, Unité de Chirurgie, Toulouse Cedex, France
› Author Affiliations
Further Information

Publication History

Received: 22 July 2008

Accepted: 08 April 2009

Publication Date:
18 December 2017 (online)

Summary

Introduction: Angular deformity in the growing skeleton of animals, especially in the radius and ulna, is occasionally seen in clinical practice. The mechanism of spontaneous correction of these angular deformities however remains to be elucidated. The purpose of our experiment was to explore the ability of a growth plate to correct an induced valgus deformity, and to study the mechanism of correction.

Methods: Before beginning the study, valgus deformity of the distal radius had been induced in lambs by the application of a device that causes asymmetrical compression of the growth plate. The study began after removal of the device and spontaneous correction of the induced deformity was observed weekly for 20 weeks. The angles of the deformity and longitudinal growth on the medial and lateral portions of the growth plate were respectively measured on craniocaudal and mediolateral radiographs.

Results and conclusions: Spontaneous correction of the valgus deformity occurred during the first 16 weeks. It resulted from asymmetrical growth characterised by restricted activity of the medial portion of the growth plate (14.8%) in comparison to the lateral portion of the experimental radius, and also in comparison to the medial portion of the control radius.

 
  • References

  • 1 Auer JA. Angular limb deformities. . In Equine surgery. ed 3 Auer JA, Stick JA. eds St Louis, Mo: Saunders Elsevier; 2006: 1130-1149.
  • 2 Auer JA, von Rechenberg B. Treatment of angular deformities in foals. Clin Tech Equine Pract 2006; 5: 270-281.
  • 3 Gelbke H. The influence of pressure and tension on growing bone in experiments with animals. J Bone Joint Surg Am 1951; 33: 947-954.
  • 4 Appleton AB. Postural deformities and bone growth – An experimental study. Lancet 1934; 1: 451-454.
  • 5 Arkin AM, Katz JF. The effects of pressure on epiphyseal growth – The mechanical of plasticity of growing bone. J Bone Joint Surg Am 1956; 38: 1056-1076.
  • 6 Asimus E, Collard P, Salles de Gauzy J. et al Effect of low compression on the growth plate. An experimental study in sheep. Vet Comp Orthop Trauma-tol 1997; 10: 16-22.
  • 7 Fjeld TO, Steen H. Correction of angular deformity by asymmetric physeal growth and bone remodelling – An experimental study in the canine radius. Vet Radiol 1986; 27: 58-64.
  • 8 Siffert RS. The effect of staples and longitudinal wires on epiphyseal growth – An experimental study. J Bone Joint Surg Am 1956; 38: 1077-1088.
  • 9 Sijbrandij S. Inhibition of tibial growth by means of compression of its proximal epiphyseal disc in the rabbit. Acta Anat 1963; 55: 278-285.
  • 10 Strobino LJ, Colonna PC, Brodey RS. et al The effect of compression on the growth of epiphyseal bone. Surg Gynecol Obstet 1956; 99: 85-93.
  • 11 Campbell JR. Bone growth in foals and epiphyseal compression. Equine Vet J 1977; 9: 116-121.
  • 12 Haas SL. Retardation of bone growth by a wire loop. J Bone Joint Surg Am 1945; 27: 25-33.
  • 13 Fackelman GE, Reid CF, Leitch M. et al Angular limb deformities in foals. Proc Am Ass Equine Pract 1975; 21: 161-166.
  • 14 Wilson-MacDonald J. in Bone in clinical orthopedics. 2002. Chap 4. Ed Sumner Smith. Thieme; Stuttgart and New York:
  • 15 Pauwels F. Biomécanique de la hanche saine et path-ologique. Principes, techniques et résultats d';une thérapeutique causale. Berlin, Heidelberg, New-York, PA: Springer; 1977
  • 16 Trueta J, Trias A. The Vascular contribution to osteogenesis – The effect of pressure upon the epiphy-seal cartilage on the rabbit. J Bone Joint Surg Br 1961; 43: 800-813.
  • 17 Peltonen J, Karaharju EO, Alitalo I. Experimental epiphyseal distraction producing and correcting angular deformities. J Bone Joint Surg Br 1984; 66: 598-602.
  • 18 Bonnevialle P, Durroux R, Cahuzac J-P. etal Traitement des déviations frontales du genou par épiphysiodèse temporaire de Blount (étude expérimentale et clinique). Rev Chir Orthop 1982; 68: 115-127.
  • 19 Connolly J, Shindell R, Lippiello L. et al Prevention and correction of growth deformities after distal fe-moral epiphyseal fractures. In: Behavior of the growth plate. Ed Uhthoff HK, Wiley JJ. New York, PA: Raven Press; 1988: 209-215.
  • 20 Haas SL. Mechanical retardation of bone growth. J Bone Joint Surg Am 1948; 30: 506-12.
  • 21 Monticelli G, Spinelly R. Distraction epiphysiolysis as a method of limb lengthening. I. Experimental study. Clin Orthop 1981; 154: 254-261.
  • 22 Peltonen J. Bone formation and remodelling after symmetric and asymmetric physeal distraction. J Pediatr Orthop 1989; 9: 191-196.
  • 23 Ring PA. Experimental limb lengthening by epiphy-seal distraction. Br J Surg 1958; 46: 169-173.
  • 24 Ross TK, Zionts LE. Comparison of different methods used to inhibit physeal growth in a rabbit model. Clin Orthop Relat Res 1997; 340: 236-243.
  • 25 Amako T, Honda K. An experimental study of the epiphyseal stapling. J Med Sci 1957; 8: 131-138.
  • 26 Blount WP. A mature look at epiphyseal stapling. Clin Orthop 1971; 77: 158-163.
  • 27 Collard-Meynaud P, Mathon D, Asimus E. et al Lamb model of valgus deformity induced by asym-metrical compression of the growth plate. Rev Med Vet 2001; 152: 873-780.
  • 28 Uhthoff HK, Liskova-Kiar M, Hidiroglou M. Morphological studies of front limb deformities in lambs. Vet Pathol 1980; 17: 362-371.
  • 29 Uhthoff HK, Finnegan M, Hidiroglou M. Epiphysiolysis, a possible cause of limb deformities in lambs. Ann RechVet 1982; 13: 237-244.
  • 30 Cahuzac J-P, Vardon D, Salles de Gauzy J. Development of tibiofemoral angle in normal adolescents. J Bone Joint Surg Br 1995; 77: 729-732.
  • 31 Salenius P, Vankka E. The development of the tibiofemoral angle in children. J Bone Joint Surg Am 1975; 57: 259-261.
  • 32 McKellop HA, Sigholm G, Redfern FC. et al The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint. J Bone Joint Surg Am 1991; 73: 1382-1391.
  • 33 Ryöppy S, Karaharju EO. Alteration of epiphyseal growth by an experimentally produced angular deformity. Acta Orthop Scand 1974; 45: 490-498.
  • 34 Frantz CH. Epiphyseal stapling: a comprehensive review. Clin Orthop 1971; 77: 149-157.
  • 35 Karaharju EO, Ryöppy SA, Mäkinen RJ. Remodelling by asymmetrical epiphyseal growth – An experimental study in dogs. J Bone Joint Surg Br 1976; 58: 122-126.
  • 36 Smith RN. Fusion of the epiphyses of the limb bones of the sheep. Vet Rec 1956; 5: 257-259.
  • 37 Crilly RG. Longitudinal overgrowth of chicken radius. J Anat 1972; 112: 11-18.
  • 38 Read EK, Read MR, Townsend HG. et al Effect of hemi-circumferential periosteal transection and elevation in foals with experimentally induced angular limb deformities. J Am Vet Med Assoc 2002; 221: 536-540.
  • 39 Auer JA, Martens RJ. Periosteal transection and periosteal stripping for correction of angular limb deformities in foals. Am J Vet Res 1982; 43: 1530-1534.
  • 40 Auer JA, Martens RJ, Williams EH. Periosteal transection for correction of angular limb deformities in foals. J Am Vet Med Assoc 1982; 181: 459-466.
  • 41 Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clinical Orthopaedics and Related Research 1998; 355S: S205-S215.
  • 42 Friedenberg ZB, Brighton CT. Bioelectric Potentials in Bone. J Bone Joint Surg Am 1966; 48: 915-923.
  • 43 Bassett CAL, Becker RO. Generation of Electric Potentials by Bone in Response to Mechanical Stress. Science 1962; 137: 1063-1064.