Der Nuklearmediziner 2021; 44(02): 102-112
DOI: 10.1055/a-1375-9605
Aktuelle Trends aus den Radiopharmazeutischen Wissenschaften

68Ga-NeoB: Präklinische Ergebnisse zur Bildgebung gastrointestinaler Stromatumoren und zur Bestimmung der Zielrezeptordichte im Gastrointestinaltrakt

68Ga-NeoB: Preclinical results on imaging of gastrointestinal stromal tumors and determination of target receptor density in the gastrointestinal tract
Marc Pretze
1   Molekulare Bildgebung und Radiochemie, Klinik für Radiologie und Nuklearmedizin, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
,
Carmen Wängler
2   Biomedizinische Chemie, Klinik für Radiologie und Nuklearmedizin, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
,
Stefan O. Schönberg
3   Klinik für Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim
,
Björn Wängler
1   Molekulare Bildgebung und Radiochemie, Klinik für Radiologie und Nuklearmedizin, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim
› Author Affiliations

Zusammenfassung

68Ga-NeoB (früher bekannt als NeoBOMB1) ist ein neuartiger DOTA-gekoppelter Gastrin-Releasing-Peptid-Rezeptor(GRPR)-Antagonist mit hoher Bindungsaffinität zum GRPR und ausgezeichneter In-vivo-Stabilität. Ziel dieser präklinischen Studie war es, die Verwendung von 68Ga-NeoB zur Bestimmung der GRPR-Expression im Pankreasgewebe weiter zu erforschen, indem der GRPR-Sättigungsgrad im Pankreas bei der Verwendung verschiedener molarer Stoffmengen von 68Ga-NeoB geschätzt wurde. Darüber hinaus wurde 68Ga-NeoB als Tracer für gastrointestinale Stromatumoren (GIST) in 2 verschiedenen Mausstämmen untersucht. Anschließende Ex-vivo-Biodistributionsstudien mit verschiedenen Stoffmengen des antagonistischen Tracers 68Ga-NeoB mit hoher Bindungsaffinität zu GRPR wurden zur Abschätzung der Rezeptordichte in Organen oder Geweben mit hoher Expression dieses Rezeptors genutzt. Die Kombination von PET/CT und MRT-Datensätzen unterstützte die Ermittlung von Organanreicherungen auch bei Erreichen des Sättigungsgrades des Radiotracers in gastrointestinalen Organen.

Abstract

68Ga-NeoB (formerly known as NeoBOMB1) is a novel DOTA-coupled gastrin releasing peptide receptor (GRPR) antagonist with high binding affinity for GRPR and excellent in vivo stability. The aim of this preclinical study was to further explore the use of 68Ga-NeoB to determine GRPR expression in pancreatic tissue by estimating the GRPR saturation level in the pancreas when using different molar activities of 68Ga-NeoB. In addition, 68Ga-NeoB was investigated as a tracer for gastrointestinal stromal tumors (GIST) in 2 different mouse strains. Subsequent ex vivo biodistribution studies using different molar amounts of the antagonistic tracer 68Ga-NeoB with high binding affinity for GRPR were used to estimate receptor density in organs or tissues with high expression of this receptor. The combination of PET/CT and MRI datasets supported the determination of organ enrichment even when the saturation level of the radiotracer was reached in gastrointestinal organs.



Publication History

Article published online:
10 June 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Ananias HJ, Van den Heuvel MC, Helfrich W. et al. Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. The Prostate 2009; 69: 1101-1108 DOI: 10.1002/pros.20957.
  • 2 Baratto L, Jadvar H, Iagaru A. Prostate cancer theranostics targeting gastrin-releasing peptide receptors. Mol Imaging Biol 2017; 20: 501-509 DOI: 10.1007/s11307-017-1151-1.
  • 3 Bakker IL, van Tiel ST, Haeck J. et al. In vivo stabilized SB3, an attractive GRPR antagonist, for pre- and intra-operative imaging for prostate cancer. Mol Imaging Biol 2018; 20: 973-983 DOI: 10.1007/s11307-018-1185-z.
  • 4 Markwalder R, Reubi JC. Gastrin-releasing peptide receptors in the human prostate: Relation to neoplastic transformation. Cancer Res 1999; 59: 1152-1159
  • 5 Rybalov M, Ananias HJ, Hoving HD. et al. PSMA, EpCAM, VEGF and GRPR as imaging targets in locally recurrent prostate cancer after radiotherapy. Int J Mol Sci 2014; 15: 6046-6061 DOI: 10.3390/ijms15046046.
  • 6 Halmos G, Wittliff JL, Schally AV. Characterization of bombesin/gastrin-releasing peptide receptors in human breast cancer and their relationship to steroid receptor expression. Cancer Res 1995; 55: 280-287
  • 7 Gugger M, Reubi JC. Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 1999; 155: 2067-2076 DOI: 10.1016/S0002-9440(10)65525-3.
  • 8 Bauer S, Duensing A, Demetri GD. et al. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 2007; 26: 7560-7568 DOI: 10.1038/sj.onc.1210558.
  • 9 Prause M, Niedermoser S, Wängler C. et al. Synthesis, in vitro and in vivo evaluation of 18F-fluoronorimatinib as radiotracer for Imatinib-sensitive gastrointestinal stromal tumors. Nucl Med Biol 2018; 57: 1-11 DOI: 10.1016/j.nucmedbio.2017.11.004.
  • 10 Reubi JC, Körner M, Waser B. et al. High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 2004; 31: 803-810 DOI: 10.1007/s00259-004-1476-2.
  • 11 Gruber L, Jimenez-Franco LD, Decristoforo C. et al. MITIGATE-NeoBOMB1, a Phase I/IIa Study to Evaluate Safety, Pharmacokinetics and Preliminary Imaging of (68)Ga-NeoBOMB1, a Gastrin-releasing Peptide Receptor Antagonist, in GIST Patients. J Nucl Med 2020; DOI: 10.2967/jnumed.119.238808.
  • 12 Reubi JC, Wenger S, Schmuckli-Maurer J. et al. Bombesin receptor subtypes in human cancers: Detection with the universal radioligand 125I-[D-TYR6, β-ALA11, PHE13, NLE14]bombesin(6–14). Clin Cancer Res 2002; 8: 1139-1146
  • 13 Cornelio DB, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol 2007; 18: 1457-1466 DOI: 10.1093/annonc/mdm058.
  • 14 Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003; 24: 389-427 DOI: 10.1210/er.2002-0007.
  • 15 Smith CJ, Volkert WA, Hoffman TJ. Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: A concise update. Nucl Med Biol 2003; 30: 861-868 DOI: 10.1016/s0969-8051(03)00116-1.
  • 16 Varvarigou A, Bouziotis P, Zikos C. et al. Gastrin-releasing peptide (GRP) analogues for cancer imaging. Cancer Biother Radiopharm 2004; 19: 219-229 DOI: 10.1089/108497804323072002.
  • 17 Pooja D, Gunukula A, Gupta N. et al. Bombesin receptors as potential targets for anticancer drug delivery and imaging. Int J Biochem Cell Biol 2019; 114: 105567 DOI: 10.1016/j.biocel.2019.105567.
  • 18 Gonzalez N, Moody TW, Igarashi H. et al. Bombesin-related peptides and their receptors: recent advances in their role in physiology and disease states. Curr Opin Endocrinol Diabetes Obes 2008; 15: 58-64 DOI: 10.1097/MED.0b013e3282f3709b.
  • 19 Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U. et al. 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: Comparison with 18F-FDG. J Nucl Med 2007; 48: 1245-1250 DOI: 10.2967/jnumed.106.038091.
  • 20 Richter S, Wuest M, Bergman CN. et al. Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups. Bioconjugate Chem 2015; 26: 201-212 DOI: 10.1021/bc500599m.
  • 21 Schwarzenböck SM, Schmeja P, Kurth J. et al. Comparison of [11C]Choline ([11C]CHO) and [18F]Bombesin (BAY 86-4367) as imaging probes for prostate cancer in a PC-3 prostate cancer xenograft model. Mol Imaging Biol 2016; 18: 393-401 DOI: 10.1007/s11307-015-0901-1.
  • 22 Richter S, Wuest M, Krieger SS. et al. Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol 2013; 40: 1025-1034 DOI: 10.1016/j.nucmedbio.2013.07.005.
  • 23 Varasteh Z, Antoni G, Åberg O. et al. In vitro and in vivo evaluation of a 18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging. PloS one 2013; 8: e81932 DOI: 10.1371/journal.pone.0081932.g001.
  • 24 Juran S, Walther M, Stephan H. et al. Hexadentate bispidine derivatives as versatile bifunctional chelate agents for copper(II) radioisotopes. Bioconjugate Chem 2009; 20: 347-359 DOI: 10.1021/bc800461e.
  • 25 Liu Y, Hu X, Liu H. et al. A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 2013; 54: 2132-2138 DOI: 10.2967/jnumed.113.121533.
  • 26 Yang YS, Zhang X, Xiong Z. et al. Comparative in vitro and in vivo evaluation of two 64Cu-labeled bombesin analogs in a mouse model of human prostate adenocarcinoma. Nucl Med Biol 2006; 33: 371-380 DOI: 10.1016/j.nucmedbio.2005.12.011.
  • 27 Zhang H, Abiraj K, Thorek DL. et al. Evolution of bombesin conjugates for targeted PET imaging of tumors. PloS one 2012; 7: e44046 DOI: 10.1371/journal.pone.0044046.
  • 28 Fischer G, Lindner S, Litau S. et al. Next step toward optimization of GRP receptor avidities: Determination of the minimal distance between BBN(7-14) units in peptide homodimers. Bioconjugate Chem 2015; 26: 1479-1483 DOI: 10.1021/acs.bioconjchem.5b00362.
  • 29 Kroll C, Mansi R, Braun F. et al. Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 2013; 135: 16793-16796 DOI: 10.1021/ja4087648.
  • 30 Strauss LG, Koczan D, Seiz M. et al. Correlation of the Ga-68-bombesin analog Ga-68-BZH3 with receptors expression in gliomas as measured by quantitative dynamic positron emission tomography (dPET) and gene arrays. Mol Imaging Biol 2012; 14: 376-383 DOI: 10.1007/s11307-011-0508-0.
  • 31 Schuhmacher J, Zhang H, Doll J. et al. GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68Ga-labeled bombesin(6–14) analog. J Nucl Med 2005; 46: 691-699
  • 32 Lau J, Rousseau E, Zhang Z. et al. Positron emission tomography imaging of the gastrin-releasing peptide receptor with a novel bombesin analogue. ACS Omega 2019; 4: 1470-1478 DOI: 10.1021/acsomega.8b03293.
  • 33 Maina T, Nock BA, Zhang H. et al. Species differences of bombesin analog interactions with GRP-R define the choice of animal models in the development of GRP-R–targeting drugs. J Nucl Med 2005; 46: 823-830
  • 34 Fischer CA, Vomstein S, Mindt TL. A bombesin-shepherdin radioconjugate designed for combined extra- and intracellular targeting. Pharmaceuticals 2014; 7: 662-675 DOI: 10.3390/ph7060662.
  • 35 Mather SJ, Nock BA, Maina T. et al. GRP receptor imaging of prostate cancer using [99mTc]Demobesin 4: a first-in-man study. Mol Imaging Biol 2014; 16: 888-895 DOI: 10.1007/s11307-014-0754-z.
  • 36 Van de Wiele C, Dumont F, Vanden Broecke R. et al. Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 2000; 27: 1694-1699 DOI: 10.1007/s002590000355.
  • 37 Baidoo KE, Lin K-S, Zhan Y. et al. Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjugate Chem 1998; 9: 218-225 DOI: 10.1021/bc9701959.
  • 38 Karra SR, Schibli R, Gali H. et al. 99mTc-labeling and in vivo studies of a bombesin analogue with a novel water-soluble dithiadiphosphine-based bifunctional chelating agent. Bioconjugate Chem 1999; 10: 254-260 DOI: 10.1021/bc980096a.
  • 39 Chen Q, Ma Q, Chen M. et al. An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2. PloS one 2015; 10: e0123401 DOI: 10.1371/journal.pone.0123401.
  • 40 Zhang H, Chen J, Waldherr C. et al. Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting Bombesin receptor-expressing tumors. Cancer Res 2004; 64: 6707-6715
  • 41 Breeman WAP, de Jong M, Bernard BF. et al. Pre-clinical evaluation of [111In-DTPA-Pro1,Tyr4]bombesin, a new radioligand for bombesin-receptor scintigraphy. Int J Cancer 1999; 83: 657-663
  • 42 Breeman WAP, de Jong M, Erion JL. et al. Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 2002; 43: 1650-1656
  • 43 Dalm SU, Bakker IL, de Blois E. et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. J Nucl Med 2017; 58: 293-299 DOI: 10.2967/jnumed.116.176636.
  • 44 Chatalic KLS, Konijnenberg M, Nonnekens J. et al. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies. Theranostics 2016; 6: 104-117 DOI: 10.7150/thno.13580.
  • 45 Valverde IE, Huxol E, Mindt TL. Radiolabeled antagonistic bombesin peptidomimetics for tumor targeting. J Labelled Compd Radiopharm 2014; 57: 275-278 DOI: 10.1002/jlcr.3162.
  • 46 Pretze M, Hien A, Roscher M. et al. Efficient modification of GRPR-specific gold nanoparticles for fluorescence imaging of prostate carcinoma. J Labelled Compd Radiopharm 2017; 60: S601 DOI: 10.1002/jlcr.3508.
  • 47 Lindner S, Michler C, Wängler B. et al. PESIN multimerization improves receptor avidities and in vivo tumor targeting properties to GRPR-overexpressing tumors. Bioconjugate Chem 2014; 25: 489-500 DOI: 10.1021/bc4004662.
  • 48 Nock BA, Kaloudi A, Lymperis E. et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: Preclinical and first clinical results. J Nucl Med 2017; 58: 75-80 DOI: 10.2967/jnumed.116.178889.
  • 49 Paulmichl A, Summer D, Manzl C. et al. Targeting gastrointestinal stromal tumor with 68Ga-labeled peptides: An in vitro study on gastrointestinal stromal tumor-cell lines. Cancer Biother Radiopharm 2016; 31: 302-310 DOI: 10.1089/cbr.2016.2092.
  • 50 Kaloudi A, Lymperis E, Giarika A. et al. NeoBOMB1, a GRPR-antagonist for breast cancer theragnostics: First results of a preclinical study with [67Ga]NeoBOMB1 in T-47D cells and tumor-bearing mice. Molecules 2017; 22: 1950-1963 DOI: 10.3390/molecules22111950.
  • 51 Nicolas GP, Mansi R, McDougall L. et al. Biodistribution, pharmacokinetics, and dosimetry of 177Lu-, 90Y-, and 111In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist 177Lu-DOTATATE: The mass effect. J Nucl Med 2017; 58: 1435-1441 DOI: 10.2967/jnumed.117.191684.
  • 52 Reile H, Armatis PE, Schally AV. Characterization of high-affinity receptors for bombesin/gastrin releasing peptide on the human prostate cancer cell lines PC-3 and DU-145: internalization of receptor bound 125I-(Tyr4) bombesin by tumor cells. The Prostate 1994; 25: 29-38 DOI: 10.1002/pros.2990250105.
  • 53 Maroy R, Boisgard R, Comtat C. et al. Quantitative organ time activity curve extraction from rodent PET images without anatomical prior. Med Phys 2010; 37: 1507-1517 DOI: 10.1118/1.3327454.
  • 54 McGoron AJ, Capille M, Georgiou MF. et al. Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping. BMC Med Imaging 2008; 8: 4 DOI: 10.1186/1471-2342-8-4.
  • 55 Paredes JL, Orabi AI, Ahmad T. et al. A non-invasive method of quantifying pancreatic volume in mice using micro-MRI. PloS one 2014; 9: e92263 DOI: 10.1371/journal.pone.0092263.
  • 56 Dalm SU, Bakker IL, de Blois E. et al. 68Ga/177Lu-NeoBOMB1, a Novel Radiolabeled GRPR Antagonist for Theranostic Use in Oncology. J Nucl Med 2017; 58: 293-299 DOI: 10.2967/jnumed.116.176636.
  • 57 Nock BA, Kaloudi A, Lymperis E. et al. Theranostic Perspectives in Prostate Cancer with the Gastrin-Releasing Peptide Receptor Antagonist NeoBOMB1: Preclinical and First Clinical Results. J Nucl Med 2017; 58: 75-80 DOI: 10.2967/jnumed.116.178889.