Dtsch Med Wochenschr 2023; 148(19): 1227-1235
DOI: 10.1055/a-1937-8337
Dossier

Update: Diagnostik und Therapie der pulmonalen Tuberkulose

Update: Diagnostics and treatment of pulmonary tuberculosis
Gunar Günther
,
Martin Kuhns
,
Inna Friesen

Die Diagnostik der Tuberkulose hat große Lücken, worauf u.a. die Abnahme der diagnostizierten Fälle und die Zunahme von Todesfällen in den letzten Jahren hinweist. Viele Infizierte werden nicht identifiziert, da die symptombasierten Screeningverfahren versagen. Neue Ansätze in der Diagnostik und auch Therapie sind dringend erforderlich für die erfolgreiche Eindämmung der Tuberkulose weltweit.

Abstract

Molecular diagnostic tools have changed the approach to the detection of Mycobacterium tuberculosis and associated drug-resistance substantially. PCR-based technologies allow a more rapid detection with higher diagnostic sensitivity in pulmonary and extrapulmonary specimens. However, a real point of care test, which needs minimal technical resources remains missing. Genome sequencing technologies are currently changing tuberculosis drug resistance testing, and for some questions are replacing phenotypic drug resistance testing, based on culture.

New evidence on treatment for drug-sensitive tuberculosis allows shortening of treatment to 4 months, or in selected cases even to 2 months based on the use of fluoroquinolones, high dose rifamycins and newly developed TB medicines.

Such developments will very likely simplify the management of tuberculosis, although prevention remains the most important pillar of any tuberculosis related public health strategy.

Kernaussagen
  • Die NAT-basierte Diagnostik der TB, inklusive Resistenztestung, mindestens für Rifampicin, stellt aktuell das initiale Diagnostikverfahren der TB dar.

  • Die Kultivierung des Mycobacterium tuberculosis bleibt weiterhin der Goldstandard der TB-Diagnostik.

  • Die Genomsequenzierung von Mycobacterium tuberculosis beschleunigt, präzisiert und ersetzt zunehmend bisherige molekulare und phänotypische Verfahren der Resistenztestung.

  • Die Therapie der medikamentensensiblen Tuberkulose kann bei Erwachsenen im Falle der Verfügbarkeit des aktuell in der EU nicht erhältlichen Rifapentin, zusammen mit Moxifloxacin, Isoniazid und Pyrazinamid, von 6 auf 4 Monate verkürzt werden.

  • Kinder bis 16 Jahre dürfen ebenfalls im Falle einer wenig schweren Erkrankung nach 2 Monaten 4-fach Standardtherapie und 2 Monaten 2-fach-Therapie mit Rifampicin und Isonizid die Behandlung beenden.



Publikationsverlauf

Artikel online veröffentlicht:
04. Oktober 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Frascella B, Richards AS, Sossen B. et al. Subclinical Tuberculosis Disease-A Review and Analysis of Prevalence Surveys to Inform Definitions, Burden, Associations, and Screening Methodology. Clin Infect Dis 2021; 73: e830-e841 DOI: 10.1093/cid/ciaa1402. (PMID: 32936877)
  • 2 World Health Organization: Global tuberculosis report 2022. Geneva; 2022. Licence: CC BY-NC-SA 3.0 IGO.
  • 3 Cazabon D, Alsdurf H, Satyanarayana S. et al. Quality of tuberculosis care in high burden countries: the urgent need to address gaps in the care cascade. Int J Infect Dis 2017; 56: 111-116 DOI: 10.1016/j.ijid.2016.10.016. (PMID: 27794468)
  • 4 World Health Organization: Practical manual of processing stool samples for diagnosis of childhood TB. Geneva; 2022. Licence: CC BY-NC-SA 3.0 IGO.
  • 5 Andama A, Whitman GR, Crowder R. et al. Accuracy of Tongue Swab Testing Using Xpert MTB-RIF Ultra for Tuberculosis Diagnosis. J Clin Microbiol 2022; 60: e00421-e00422 DOI: 10.1128/jcm.00421-22. (PMID: 35758702)
  • 6 Dhana A, Hamada Y, Kengne AP. et al. Diagnostic accuracy of WHO screening criteria to guide lateral-flow lipoarabinomannan testing among HIV-positive inpatients: A systematic review and individual participant data meta-analysis. J Infect 2022; 85: 40-48 DOI: 10.1016/j.jinf.2022.05.010.
  • 7 Krutikov M, Faust L, Nikolayevskyy V. et al. The diagnostic performance of novel skin-based in-vivo tests for tuberculosis infection compared with purified protein derivative tuberculin skin tests and blood-based in vitro interferon-γ release assays: a systematic review and meta-analysis. Lancet Infect Dis 2022; 22: 250-264 DOI: 10.1016/S1473-3099(21)00261-9.
  • 8 Schaberg T, Brinkmann F, Feiterna-Sperling C. et al. Tuberkulose im Erwachsenenalter: Eine S2k-Leitlinie zur Diagnostik und Therapie, Chemoprävention und Chemoprophylaxe der Tuberkulose im Erwachsenenalter des Deutschen Zentralkomitees zur Bekämpfung der Tuberkulose e. V. (DZK) und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin e. V. (DGP). Pneumologie 2022; 76: 727-819 DOI: 10.1055/a-1934-8303.
  • 9 Richter E. MIQ 05: Tuberkulose Mykobakteriose: Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik. 2. Aufl. In: Podbielski A, Mauch H. . München: Urban & Fischer; 2013
  • 10 World Health Organization: WHO operational handbook on tuberculosis. Module 3: diagnosis. Tests for tuberculosis infection. Geneva; 2022. Licence: CC BY-NC-SA 3.0 IGO.
  • 11 Xie YL, Chakravorty S, Armstrong DT. et al. Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis. N Engl J Med 2017; 377: 1043-1054 DOI: 10.1056/NEJMoa1614915. (PMID: 28902596)
  • 12 Nadarajan D, Hillemann D, Kamara R. et al. Evaluation of the Roche cobas MTB and MTB-RIF/INH Assays in Samples from Germany and Sierra Leone. J Clin Microbiol 2021; 59: e02983-20 DOI: 10.1128/JCM.02983-20.
  • 13 World Health Organization:Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva; 2021. Licence: CC BY-NC-SA 3.0 IGO.
  • 14 Mvelase NR, Pillay M, Sibanda W. et al. rpoB Mutations Causing Discordant Rifampicin Susceptibility in Mycobacterium tuberculosis: Retrospective Analysis of Prevalence, Phenotypic, Genotypic, and Treatment Outcomes. Open Forum Infect Dis 2019; 6 DOI: 10.1093/ofid/ofz065. (PMID: 31024968)
  • 15 The CRyPTIC Consortium and the 100,000 Genomes Project. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. N Engl J Med 2018; 379: 1403-1415 DOI: 10.1056/NEJMoa1800474. (PMID: 30280646)
  • 16 Finci I, Albertini A, Merker M. et al. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study. Lancet Microbe 2022; DOI: 10.1016/S2666-5247(22)00116-1.
  • 17 Jouet A, Gaudin C, Badalato N. et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J 2021; 57: 2002338 DOI: 10.1183/13993003.02338-2020. (PMID: 32943401)
  • 18 Beckert P, Sanchez-Padilla E, Merker M. et al. MDR M. tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Med 2020; 12: 104 DOI: 10.1186/s13073-020-00793-8. (PMID: 33239092)
  • 19 Iseman MD. Tuberculosis therapy: past, present and future. Eur Respir J 2002; 20: 87s-94s DOI: 10.1183/09031936.02.00309102. (PMID: 12168751)
  • 20 Fox W, Ellard GA, Mitchison DA. Studies on the treatment of tuberculosis undertaken by the British Medical Research Council Tuberculosis Units, 1946–1986, with relevant subsequent publications. Int J Tuberc Lung Dis 1999; 3: S231-S279 (PMID: 10529902)
  • 21 Gillespie SH, Kennedy N. Fluoroquinolones: a new treatment for tuberculosis?. Int J Tuberc Lung Dis 1998; 2: 265-271 (PMID: 9559396)
  • 22 Gillespie SH, Crook AM, McHugh TD. et al. Four-Month Moxifloxacin-Based Regimens for Drug-Sensitive Tuberculosis. N Engl J Med 2014; 371: 1577-1587 DOI: 10.1056/NEJMoa1407426. (PMID: 25196020)
  • 23 Merle CS, Fielding K, Sow OB. et al. A four-month gatifloxacin-containing regimen for treating tuberculosis. The New England journal of medicine 2014; 371: 1588-1598 DOI: 10.1056/NEJMoa1315817. (PMID: 25337748)
  • 24 Jindani A, Harrison TS, Nunn AJ. et al. High-Dose Rifapentine with Moxifloxacin for Pulmonary Tuberculosis. N Engl J Med 2014; 371: 1599-1608 DOI: 10.1056/NEJMoa1314210. (PMID: 25337749)
  • 25 Boeree MJ, Diacon AH, Dawson R. et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. American journal of respiratory and critical care medicine 2015; 191: 1058-1065 DOI: 10.1164/rccm.201407-1264OC. (PMID: 25654354)
  • 26 Rosenthal IM, Tasneen R, Peloquin CA. et al. Dose-ranging comparison of rifampin and rifapenine in two pathologically distinct murine models of tuberculosis. AntimicrobAgents Chemother 2012; 56: 4331-4340
  • 27 Dorman SE, Nahid P, Kurbatova EV. et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. N Engl J Med 2021; 384: 1705-1718 DOI: 10.1056/NEJMoa2033400. (PMID: 33951360)
  • 28 Guglielmetti L, Günther G, Leu C. et al. Rifapentine access in Europe: growing concerns over key tuberculosis treatment component. Eur Respir J 2022; 59: 2200388 DOI: 10.1183/13993003.00388-2022. (PMID: 35589114)
  • 29 World Health Organization: WHO consolidated guidelines on tuberculosis. Module 1: prevention – tuberculosis preventive treatment. Geneva; 2020. Licence: CC BY-NC-SA 3.0 IGO.
  • 30 Paton NI, Cousins C, Suresh C. et al. Treatment Strategy for Rifampin-Susceptible Tuberculosis. N Engl J Med 2023; 388: 873-887 DOI: 10.1056/NEJMoa2212537. (PMID: 36808186)
  • 31 Dean AS, Zignol M, Cabibbe AM. et al. Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data. PLoS Med 2020; 17: e1003008 DOI: 10.1371/journal.pmed.1003008. (PMID: 31961877)
  • 32 Turkova A, Wills GH, Wobudeya E. et al. Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children. N Engl J Med 2022; 386: 911-922 DOI: 10.1056/NEJMoa2104535. (PMID: 35263517)
  • 33 Allwood BW, Byrne A, Meghji J. et al. Post-Tuberculosis Lung Disease: Clinical Review of an Under-Recognised Global Challenge. Respiration 2021; 100: 751-763 DOI: 10.1159/000512531. (PMID: 33401266)
  • 34 Lange C, Aarnoutse R, Chesov D. et al. Perspective for Precision Medicine for Tuberculosis. Front Immunol 2020; 11: 566608 DOI: 10.3389/fimmu.2020.566608. (PMID: 33117351)