Am J Perinatol
DOI: 10.1055/a-2090-5581
Original Article

Reference Ranges and Development Patterns of Fetal Myocardial Function Using Speckle Tracking Echocardiography in Healthy Fetuses at 17 to 24 Weeks of Gestation

1   Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
,
Kusol Russameecharoen
1   Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
,
Pornpimol Ruangvutilert
1   Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
,
Sommai Viboonchard
1   Division of Maternal‐Fetal Medicine, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
,
Mark Sklansky
2   Division of Pediatric Cardiology, Department of Pediatrics, UCLA Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, California
,
Greggory R. DeVore
3   Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California
4   The Fetal Diagnostic Centers, Pasadena, California
› Author Affiliations
Funding This study was supported by a grant from the Siriraj Research Development Fund, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (grant no.: RO16232014).

Abstract

Objective The purposes of the study were to develop reference ranges and maturation patterns of fetal cardiac function parameters measured by speckle tracking echocardiography (STE) using multiple biometric variables at 17 to 24 weeks' gestation among Thai fetuses and to compare with other previous reports.

Study Design The four-chamber view of the fetal heart in 79 healthy fetuses was suitably analyzed by STE to establish the best-fit regression model. The 95% reference intervals and Z-score equations of fetal cardiac function parameters were computed.

Results The fractional area change of both ventricles, left ventricular (LV) end-diastolic and end-systolic volumes, LV stroke volume, LV cardiac output (CO), and LV CO per kilogram were all increased according to gestational age (GA) and five fetal biometric measurements. However, the global longitudinal strain, basal-apical length fractional shortening (BAL-FS), BAL annular free wall and septal wall FS, BAL free wall and septal wall annular plane systolic excursions, 24-segment transverse width FS, as well as LV ejection fraction were all independent of GA or other somatic characteristics. There were varying development patterns between fetal right and left ventricles of these cardiac function indices across the gestation period.

Conclusion Our study created Z-score and corresponding centile calculators, 5th and 95th centile reference tables, and corresponding graphs and determined the normal evolution across gestation using multiple somatic growth and age variables between 17 and 24 gestational weeks. These nomograms serve as an essential prerequisite for quantitatively evaluating fetal cardiac contractility and allow for precisely detecting early changes in the fetal heart function.

Key Points

  • Most fetal cardiac function measurements were correlated with all the independent variables.

  • Fetal ventricular function parameters have their own characteristic maturation changes.

  • Racial variability may not occupy an important place for fetal myocardial function during these GA.



Publication History

Received: 27 January 2023

Accepted: 04 May 2023

Accepted Manuscript online:
10 May 2023

Article published online:
22 June 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Day TG, Charakida M, Simpson JM. Using speckle-tracking echocardiography to assess fetal myocardial deformation: are we there yet?. Ultrasound Obstet Gynecol 2019; 54 (05) 575-581
  • 2 Rychik J, Zeng S, Bebbington M. et al. Speckle tracking-derived myocardial tissue deformation imaging in twin-twin transfusion syndrome: differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther 2012; 32 (1-2) 131-137
  • 3 Van Mieghem T, Giusca S, DeKoninck P. et al. Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J Am Soc Echocardiogr 2010; 23 (03) 301-308
  • 4 Crispi F, Bijnens B, Sepulveda-Swatson E. et al. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging 2014; 7 (05) 781-787
  • 5 Miranda JO, Cerqueira RJ, Ramalho C, Areias JC, Henriques-Coelho T. Fetal cardiac function in maternal diabetes: a conventional and speckle-tracking echocardiographic study. J Am Soc Echocardiogr 2018; 31 (03) 333-341
  • 6 Ishii T, McElhinney DB, Harrild DM. et al. Circumferential and longitudinal ventricular strain in the normal human fetus. J Am Soc Echocardiogr 2012; 25 (01) 105-111
  • 7 Meister M, Axt-Fliedner R, Graupner O. et al. Atrial and ventricular deformation analysis in normal fetal hearts using two-dimensional speckle tracking echocardiography. Fetal Diagn Ther 2020; 47 (09) 699-710
  • 8 Enzensberger C, Achterberg F, Graupner O, Wolter A, Herrmann J, Axt-Fliedner R. Wall-motion tracking in fetal echocardiography-Influence of frame rate on longitudinal strain analysis assessed by two-dimensional speckle tracking. Echocardiography 2017; 34 (06) 898-905
  • 9 Ta-Shma A, Perles Z, Gavri S. et al. Analysis of segmental and global function of the fetal heart using novel automatic functional imaging. J Am Soc Echocardiogr 2008; 21 (02) 146-150
  • 10 Di Salvo G, Russo MG, Paladini D. et al. Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses. Eur J Echocardiogr 2008; 9 (06) 754-756
  • 11 Willruth AM, Geipel AK, Fimmers R, Gembruch UG. Assessment of right ventricular global and regional longitudinal peak systolic strain, strain rate and velocity in healthy fetuses and impact of gestational age using a novel speckle/feature-tracking based algorithm. Ultrasound Obstet Gynecol 2011; 37 (02) 143-149
  • 12 Barker PC, Houle H, Li JS, Miller S, Herlong JR, Camitta MG. Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009; 26 (01) 28-36
  • 13 Kapusta L, Mainzer G, Weiner Z. et al. Changes in fetal left and right ventricular strain mechanics during normal pregnancy. J Am Soc Echocardiogr 2013; 26 (10) 1193-1200
  • 14 Maskatia SA, Pignatelli RH, Ayres NA, Altman CA, Sangi-Haghpeykar H, Lee W. Longitudinal changes and interobserver variability of systolic myocardial deformation values in a prospective cohort of healthy fetuses across gestation and after delivery. J Am Soc Echocardiogr 2016; 29 (04) 341-349
  • 15 Crispi F, Sepulveda-Swatson E, Cruz-Lemini M. et al. Feasibility and reproducibility of a standard protocol for 2D speckle tracking and tissue Doppler-based strain and strain rate analysis of the fetal heart. Fetal Diagn Ther 2012; 32 (1-2): 96-108
  • 16 DeVore GR, Zaretsky M, Gumina DL, Hobbins JC. Right and left ventricular 24-segment sphericity index is abnormal in small-for-gestational-age fetuses. Ultrasound Obstet Gynecol 2018; 52 (02) 243-249
  • 17 Germanakis I, Matsui H, Gardiner HM. Myocardial strain abnormalities in fetal congenital heart disease assessed by speckle tracking echocardiography. Fetal Diagn Ther 2012; 32 (1-2): 123-130
  • 18 Miller TA, Puchalski MD, Weng C, Menon SC. Regional and global myocardial deformation of the fetal right ventricle in hypoplastic left heart syndrome. Prenat Diagn 2012; 32 (10) 949-953
  • 19 Truong UT, Sun HY, Tacy TA. Myocardial deformation in the fetal single ventricle. J Am Soc Echocardiogr 2013; 26 (01) 57-63
  • 20 DeVore GR, Satou GM, Afshar Y, Harake D, Sklansky M. Evaluation of fetal cardiac size and shape: a new screening tool to identify fetuses at risk for tetralogy of Fallot. J Ultrasound Med 2021; 40 (12) 2537-2548
  • 21 Brooks PA, Khoo NS, Hornberger LK. Systolic and diastolic function of the fetal single left ventricle. J Am Soc Echocardiogr 2014; 27 (09) 972-977
  • 22 Peng QH, Zhou QC, Zeng S. et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn 2009; 29 (12) 1149-1155
  • 23 Matsui H, Germanakis I, Kulinskaya E, Gardiner HM. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol 2011; 37 (02) 150-157
  • 24 DeVore GR, Gumina DL, Hobbins JC. Assessment of ventricular contractility in fetuses with an estimated fetal weight less than the tenth centile. Am J Obstet Gynecol 2019; 221 (05) 498.e1-498.e22
  • 25 DeVore GR, Haxel C, Satou G. et al. Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 2021; 57 (02) 282-291
  • 26 DeVore GR, Jone PN, Satou G, Sklansky M, Cuneo BF. Aortic coarctation: a comprehensive analysis of shape, size, and contractility of the fetal heart. Fetal Diagn Ther 2020; 47 (05) 429-439
  • 27 DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of the right and left ventricles: an integrated approach measuring the area, length, and width of the chambers in normal fetuses. Prenat Diagn 2017; 37 (12) 1203-1212
  • 28 DeVore GR, Klas B, Satou G, Sklansky M. Longitudinal annular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities. J Ultrasound Med 2018; 37 (05) 1159-1171
  • 29 DeVore GR, Klas B, Satou G, Sklansky M. 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 2018; 51 (05) 650-658
  • 30 DeVore GR, Polanco B, Satou G, Sklansky M. Two-dimensional speckle tracking of the fetal heart: a practical step-by-step approach for the fetal sonologist. J Ultrasound Med 2016; 35 (08) 1765-1781
  • 31 DeVore GR, Portella PP, Andrade EH, Yeo L, Romero R. Cardiac measurements of size and shape in fetuses with absent or reversed end-diastolic velocity of the umbilical artery and perinatal survival and severe growth restriction before 34 weeks' gestation. J Ultrasound Med 2021; 40 (08) 1543-1554
  • 32 DeVore GR, Satou G, Sklansky M. Abnormal fetal findings associated with a global sphericity index of the 4-chamber view below the 5th centile. J Ultrasound Med 2017; 36 (11) 2309-2318
  • 33 DeVore GR, Tabsh K, Polanco B, Satou G, Sklansky M. Fetal heart size: a comparison between the point-to-point trace and automated ellipse methods between 20 and 40 weeks' gestation. J Ultrasound Med 2016; 35 (12) 2543-2562
  • 34 DeVore GR, Satou G, Sklansky M. Comparing the non-quiver and quiver techniques for identification of the endocardial borders used for speckle-tracking analysis of the ventricles of the fetal heart. J Ultrasound Med 2021; 40 (09) 1955-1961
  • 35 DeVore GR, Klas B, Satou G, Sklansky M. Quantitative evaluation of fetal right and left ventricular fractional area change using speckle-tracking technology. Ultrasound Obstet Gynecol 2019; 53 (02) 219-228
  • 36 DeVore GR, Klas B, Satou G, Sklansky M. Longitudinal annular systolic displacement compared to global strain in normal fetal hearts and those with cardiac abnormalities. J Ultrasound Med 2018; 37 (05) 1159-1171
  • 37 DeVore GR, Klas B, Satou G, Sklansky M. Speckle tracking of the basal lateral and septal wall annular plane systolic excursion of the right and left ventricles of the fetal heart. J Ultrasound Med 2019; 38 (05) 1309-1318
  • 38 DeVore GR, Klas B, Satou G, Sklansky M. Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 2018; 37 (05) 1129-1141
  • 39 DeVore GR, Klas B, Satou G, Sklansky M. Evaluation of fetal left ventricular size and function using speckle-tracking and the Simpson rule. J Ultrasound Med 2019; 38 (05) 1209-1221
  • 40 DeVore GR. Computing the Z score and centiles for cross-sectional analysis: a practical approach. J Ultrasound Med 2017; 36 (03) 459-473
  • 41 Salomon LJ, Duyme M, Crequat J. et al. French fetal biometry: reference equations and comparison with other charts. Ultrasound Obstet Gynecol 2006; 28 (02) 193-198
  • 42 Altman DG. Construction of age-related reference centiles using absolute residuals. Stat Med 1993; 12 (10) 917-924
  • 43 Altman DG, Chitty LS. Design and analysis of studies to derive charts of fetal size. Ultrasound Obstet Gynecol 1993; 3 (06) 378-384
  • 44 Royston P, Wright EM. A method for estimating age-specific reference intervals ('normal ranges') based on fractional polynomials and exponential transformation. J R Stat Soc 1998; 161: 79-101
  • 45 Royston P, Wright EM. How to construct 'normal ranges' for fetal variables. Ultrasound Obstet Gynecol 1998; 11 (01) 30-38
  • 46 Guirado L, Crispi F, Soveral I. et al. Nomograms of fetal right ventricular fractional area change by 2D echocardiography. Fetal Diagn Ther 2020; 47 (05) 399-410
  • 47 Lee-Tannock A, Hay K, Gooi A, Kumar S. Global longitudinal reference ranges for fetal myocardial deformation in the second half of pregnancy. J Clin Ultrasound 2020; 48 (07) 396-404
  • 48 Adell M, Ayerza Casas A, Jiménez Montañés L. et al. Evolution of strain and strain rate values throughout gestation in healthy fetuses. Int J Cardiovasc Imaging 2020; 36 (01) 59-66
  • 49 Goldinfeld M, Weiner E, Peleg D, Shalev E, Ben-Ami M. Evaluation of fetal cardiac contractility by two-dimensional ultrasonography. Prenat Diagn 2004; 24 (10) 799-803
  • 50 Song Y, Yin H, Wang W. et al. Evaluation of fetal cardiac functions in the setting of maternal diabetes: application of the global spherical index, global strain and fractional area change by the speckle tracking technique. Eur J Obstet Gynecol Reprod Biol 2021; 264: 162-167
  • 51 Wang D, Liu C, Liu X, Zhang Y, Wang Y. Evaluation of prenatal changes in fetal cardiac morphology and function in maternal diabetes mellitus using a novel fetal speckle-tracking analysis: a prospective cohort study. Cardiovasc Ultrasound 2021; 19 (01) 25
  • 52 Mao YK, Zhao BW, Wang B. Z-score reference ranges for angular m-mode displacement at 22-40 weeks' gestation. Fetal Diagn Ther 2017; 41 (02) 115-126
  • 53 Lee-Tannock A, Hay K, Gooi A, Kumar S. Longitudinal reference ranges for tricuspid annular plane systolic excursion and mitral annular plane systolic excursion in normally grown fetuses. J Ultrasound Med 2020; 39 (05) 929-937
  • 54 Tedesco GD, de Souza Bezerra M, Barros FSB. et al. Fetal heart function by tricuspid annular plane systolic excursion and ventricular shortening fraction using STIC M-mode: reference ranges and validation. Am J Perinatol 2017; 34 (13) 1354-1361
  • 55 Messing B, Gilboa Y, Lipschuetz M, Valsky DV, Cohen SM, Yagel S. Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode. Ultrasound Obstet Gynecol 2013; 42 (02) 182-188
  • 56 Gardiner HM, Pasquini L, Wolfenden J. et al. Myocardial tissue Doppler and long axis function in the fetal heart. Int J Cardiol 2006; 113 (01) 39-47
  • 57 DeVore GR, Klas B, Satou G, Sklansky M. Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 2018; 37 (05) 1129-1141
  • 58 Yovera L, Zaharia M, Jachymski T. et al. Impact of gestational diabetes mellitus on fetal cardiac morphology and function: cohort comparison of second- and third-trimester fetuses. Ultrasound Obstet Gynecol 2021; 57 (04) 607-613
  • 59 DeVore GR, Siassi B, Platt LD. Fetal echocardiography. IV. M-mode assessment of ventricular size and contractility during the second and third trimesters of pregnancy in the normal fetus. Am J Obstet Gynecol 1984; 150 (08) 981-988
  • 60 Huhta JC. Guidelines for the evaluation of heart failure in the fetus with or without hydrops. Pediatr Cardiol 2004; 25 (03) 274-286
  • 61 Thammavong K, Luewan S, Wanapirak C, Tongsong T. Ultrasound features of fetal anemia lessons from hemoglobin bart disease. J Ultrasound Med 2021; 40 (04) 659-674
  • 62 van Oostrum NHM, de Vet CM, van der Woude DAA, Kemps HMC, Oei SG, van Laar JOEH. Fetal strain and strain rate during pregnancy measured with speckle tracking echocardiography: a systematic review. Eur J Obstet Gynecol Reprod Biol 2020; 250: 178-187
  • 63 Semmler J, Day TG, Georgiopoulos G. et al. Fetal speckle-tracking: impact of angle of insonation and frame rate on global longitudinal strain. J Am Soc Echocardiogr 2020; 33 (09) 1141-1146.e2