Semin Thromb Hemost 2011; 37(2): 146-152
DOI: 10.1055/s-0030-1270342
© Thieme Medical Publishers

The Functions of Microparticles in Pre-Eclampsia

Joris A.M van der Post1 , Christianne A.R Lok1 , Kees Boer1 , Auguste Sturk2 , Ian L. Sargent3 , Rienk Nieuwland2
  • 1Department of Obstetrics and Gynaecology, Academic Medical Center, Amsterdam, The Netherlands
  • 2Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
  • 3Nuffield Department of Obstetrics and Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom
Further Information

Publication History

Publication Date:
02 March 2011 (online)

ABSTRACT

Pre-eclampsia (P-EC), a heterogenic multisystem disorder characterized by hypertension and proteinuria, usually develops in the second half of pregnancy. The incidence is 2 to 5%, and P-EC is therefore a major cause of maternal and perinatal morbidity and mortality. Although the exact etiology is unknown, placental factors released into the maternal circulation lead to systemic maternal inflammation and endothelial dysfunction. Growing evidence indicates that placenta-derived microparticles, best known as syncytiotrophoblast microparticles (STBM), are important among these factors. This review provides an overview of the presence and function(s) of STBM and other cell-derived microparticles and exosomes.

REFERENCES

  • 1 Sibai B M. Preeclampsia as a cause of preterm and late preterm (near-term) births.  Semin Perinatol. 2006;  30 (1) 16-19
  • 2 Redman C W, Sargent I L. The pathogenesis of pre-eclampsia.  Gynecol Obstet Fertil. 2001;  29 (7-8) 518-522
  • 3 Toth B, Lok C A, Böing A et al. Microparticles and exosomes: impact on normal and complicated pregnancy.  Am J Reprod Immunol. 2007;  58 (5) 389-402
  • 4 Lok C A, Van Der Post J A, Sargent I L et al. Changes in microparticle numbers and cellular origin during pregnancy and preeclampsia.  Hypertens Pregnancy. 2008;  27 (4) 344-360
  • 5 Bretelle F, Sabatier F, Desprez D et al. Circulating microparticles: a marker of procoagulant state in normal pregnancy and pregnancy complicated by preeclampsia or intrauterine growth restriction.  Thromb Haemost. 2003;  89 (3) 486-492
  • 6 Lok C A, Nieuwland R, Sturk A et al. Microparticle-associated P-selectin reflects platelet activation in preeclampsia.  Platelets. 2007;  18 (1) 68-72
  • 7 Macey M G, Bevan S, Alam S et al. Platelet activation and endogenous thrombin potential in pre-eclampsia.  Thromb Res. 2010;  125 (3) e76-e81
  • 8 Meziani F, Tesse A, David E et al. Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility.  Am J Pathol. 2006;  169 (4) 1473-1483
  • 9 VanWijk M J, Nieuwland R, Boer K, van der Post J A, VanBavel E, Sturk A. Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction?.  Am J Obstet Gynecol. 2002;  187 (2) 450-456
  • 10 Lok C A, Jebbink J, Nieuwland R et al. Leukocyte activation and circulating leukocyte-derived microparticles in preeclampsia.  Am J Reprod Immunol. 2009;  61 (5) 346-359
  • 11 González-Quintero V H, Jiménez J J, Jy W et al. Elevated plasma endothelial microparticles in preeclampsia.  Am J Obstet Gynecol. 2003;  189 (2) 589-593
  • 12 González-Quintero V H, Smarkusky L P, Jiménez J J et al. Elevated plasma endothelial microparticles: preeclampsia versus gestational hypertension.  Am J Obstet Gynecol. 2004;  191 (4) 1418-1424
  • 13 Germain S J, Sacks G P, Sooranna S R, Soorana S R, Sargent I L, Redman C W. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles.  J Immunol. 2007;  178 (9) 5949-5956
  • 14 Knight M, Redman C W, Linton E A, Sargent I L. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies.  Br J Obstet Gynaecol. 1998;  105 (6) 632-640
  • 15 Redman C W, Sargent I L. Circulating microparticles in normal pregnancy and pre-eclampsia.  Placenta. 2008;  29 (Suppl A) S73-S77
  • 16 Redman C W, Sargent I L. Microparticles and immunomodulation in pregnancy and pre-eclampsia.  J Reprod Immunol. 2007;  76 (1–2) 61-67
  • 17 Goswami D, Tannetta D S, Magee L A et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction.  Placenta. 2006;  27 (1) 56-61
  • 18 Gupta A K, Rusterholz C, Huppertz B et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells.  Placenta. 2005;  26 (1) 59-66
  • 19 Gupta A K, Rusterholz C, Holzgreve W, Hahn S. Syncytiotrophoblast micro-particles do not induce apoptosis in peripheral T lymphocytes, but differ in their activity depending on the mode of preparation.  J Reprod Immunol. 2005;  68 (1–2) 15-26
  • 20 Vanwijk M J, Svedas E, Boer K, Nieuwland R, Vanbavel E, Kublickiene K R. Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women.  Am J Obstet Gynecol. 2002;  187 (6) 1686-1693
  • 21 Tesse A, Meziani F, David E et al. Microparticles from preeclamptic women induce vascular hyporeactivity in vessels from pregnant mice through an overproduction of NO.  Am J Physiol Heart Circ Physiol. 2007;  293 (1) H520-H525
  • 22 Cockell A P, Learmont J G, Smárason A K, Redman C W, Sargent I L, Poston L. Human placental syncytiotrophoblast microvillous membranes impair maternal vascular endothelial function.  Br J Obstet Gynaecol. 1997;  104 (2) 235-240
  • 23 Van Wijk M J, Boer K, Nisell H, Smarason A K, Van Bavel E, Kublickiene K R. Endothelial function in myometrial resistance arteries of normal pregnant women perfused with syncytiotrophoblast microvillous membranes.  BJOG. 2001;  108 (9) 967-972
  • 24 Lok C A, Böing A N, Reitsma P H et al. Expression of inflammation-related genes in endothelial cells is not directly affected by microparticles from preeclamptic patients.  J Lab Clin Med. 2006;  147 (6) 310-320
  • 25 Hoegh A M, Tannetta D, Sargent I et al. Effect of syncytiotrophoblast microvillous membrane treatment on gene expression in human umbilical vein endothelial cells.  BJOG. 2006;  113 (11) 1270-1279
  • 26 Kertesz Z, Hurst G, Ward M et al. Purification and characterization of a complex from placental syncytiotrophoblast microvillous membranes which inhibits the proliferation of human umbilical vein endothelial cells.  Placenta. 1999;  20 (1) 71-79
  • 27 Kertesz Z, Linton E A, Redman C W. Adhesion molecules of syncytiotrophoblast microvillous membranes inhibit proliferation of human umbilical vein endothelial cells.  Placenta. 2000;  21 (2-3) 150-159
  • 28 Smárason A K, Sargent I L, Starkey P M, Redman C W. The effect of placental syncytiotrophoblast microvillous membranes from normal and pre-eclamptic women on the growth of endothelial cells in vitro.  Br J Obstet Gynaecol. 1993;  100 (10) 943-949
  • 29 von Dadelszen P, Hurst G, Redman CW. Supernatants from co-cultured endothelial cells and syncytiotrophoblast microvillous membranes activate peripheral blood leukocytes in vitro.  Hum Reprod. 1999;  14 (4) 919-924
  • 30 VanWijk M J, Boer K, Berckmans R J et al. Enhanced coagulation activation in preeclampsia: the role of APC resistance, microparticles and other plasma constituents.  Thromb Haemost. 2002;  88 (3) 415-420
  • 31 Freeman D J, Tham K, Brown E A, Rumley A, Lowe G D, Greer I A. Fetal corticotrophin-releasing hormone mRNA, but not phosphatidylserine-exposing microparticles, in maternal plasma are associated with factor VII activity in pre-eclampsia.  J Thromb Haemost. 2008;  6 (3) 421-427
  • 32 Tans G, Rosing J, Thomassen M C, Heeb M J, Zwaal R F, Griffin J H. Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles.  Blood. 1991;  77 (12) 2641-2648
  • 33 Berckmans R J, Neiuwland R, Böing A N, Romijn F P, Hack C E, Sturk A. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.  Thromb Haemost. 2001;  85 (4) 639-646
  • 34 Messerli M, May K, Hansson S R et al. Feto-maternal interactions in pregnancies: placental microparticles activate peripheral blood monocytes.  Placenta. 2010;  31 (2) 106-112
  • 35 Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S. Occurrence of neutrophil extracellular DNA traps (NETs) in pre-eclampsia: a link with elevated levels of cell-free DNA?.  Ann N Y Acad Sci. 2006;  1075 118-122
  • 36 Gupta A K, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia.  Hum Immunol. 2005;  66 (11) 1146-1154
  • 37 Donker R B, Molema G, Faas M M et al. Absence of in vivo generalized pro-inflammatory endothelial activation in severe, early-onset preeclampsia.  J Soc Gynecol Investig. 2005;  12 (7) 518-528
  • 38 Biró E, Lok C A, Hack C E et al. Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.  Placenta. 2007;  28 (8–9) 928-935
  • 39 Lok C A, Böing A N, Sargent I L et al. Circulating platelet-derived and placenta-derived microparticles expose Flt-1 in preeclampsia.  Reprod Sci. 2008;  15 (10) 1002-1010
  • 40 Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function.  Nat Rev Immunol. 2002;  2 (8) 569-579
  • 41 Taylor D D, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling.  J Immunol. 2006;  176 (3) 1534-1542
  • 42 Hedlund M, Stenqvist A C, Nagaeva O et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function.  J Immunol. 2009;  183 (1) 340-351
  • 43 Sabapatha A, Gercel-Taylor C, Taylor D D. Specific isolation of placenta-derived exosomes from the circulation of pregnant women and their immunoregulatory consequences.  Am J Reprod Immunol. 2006;  56 (5–6) 345-355
  • 44 Gupta A K, Holzgreve W, Huppertz B, Malek A, Schneider H, Hahn S. Detection of fetal DNA and RNA in placenta-derived syncytiotrophoblast microparticles generated in vitro.  Clin Chem. 2004;  50 (11) 2187-2190
  • 45 Ng E K, Tsui N B, Lau T K et al. mRNA of placental origin is readily detectable in maternal plasma.  Proc Natl Acad Sci U S A. 2003;  100 (8) 4748-4753
  • 46 Tsui N B, Dennis Lo Y M. Placental RNA in maternal plasma: toward noninvasive fetal gene expression profiling.  Ann N Y Acad Sci. 2006;  1075 96-102
  • 47 Orozco A F, Jorgez C J, Horne C et al. Membrane protected apoptotic trophoblast microparticles contain nucleic acids: relevance to preeclampsia.  Am J Pathol. 2008;  173 (6) 1595-1608
  • 48 Reddy A, Zhong X Y, Rusterholz C et al. The effect of labour and placental separation on the shedding of syncytiotrophoblast microparticles, cell-free DNA and mRNA in normal pregnancy and pre-eclampsia.  Placenta. 2008;  29 (11) 942-949
  • 49 Oudejans C B, Go A T, Visser A et al. Detection of chromosome 21-encoded mRNA of placental origin in maternal plasma.  Clin Chem. 2003;  49 (9) 1445-1449
  • 50 Go A T, Visser A, van Dijk M et al. A novel method to identify syncytiotrophoblast-derived RNA products representative of trisomy 21 placental RNA in maternal plasma.  Methods Mol Biol. 2008;  444 291-302

R. NieuwlandPh.D. 

Department of Clinical Chemistry, Academic Medical Center, Meibergdreef 9

P.O. Box 22660, 1100 AZ Amsterdam, The Netherlands

Email: r.nieuwland@amc.nl

    >