Fortschr Neurol Psychiatr 2011; 79(11): 632-641
DOI: 10.1055/s-0031-1281733
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Tiefe Hirnstimulation bei der Schizophrenie

Deep Brain Stimulation in SchizophreniaJ. Kuhn1 [*] 1 , M. Bodatsch1 [*] 1 , V. Sturm2 , D. Lenartz2 , J. Klosterkötter1 , P. J. Uhlhaas3 , C. Winter4 , T. O. J. Gründler5
  • 1Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität Köln
  • 2Klinik für Stereotaxie und funktionelle Neurochirurgie, Klinikum der Universität Köln
  • 3Max-Planck-Institut für Hirnforschung, Frankfurt a. M.
  • 4Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus
  • 5Max-Planck-Institut für neurologische Forschung, Köln
Further Information

Publication History

Publication Date:
02 November 2011 (online)

Zusammenfassung

Die tiefe Hirnstimulation (THS) hat die Grenzen der Behandlungsmöglichkeiten einiger, vermeintlich therapieresistenter, neuropsychiatrischer Erkrankungen erfolgreich erweitert. Vor diesem Hintergrund werden immer mehr psychische Störungen im Stadium der Therapieresistenz als mögliche Indikationen der THS erwogen. Mittlerweile ist auch die Schizophrenie in den Fokus des Interesses gelangt. Diese, wie alle anderen potenziellen psychiatrischen Indikationen, bedürfen der kritischen Prüfung, ob der aktuelle Wissensstand in Hinblick auf die propagierten Wirkmechanismen der THS und die angenommene Pathophysiologie der Erkrankung einen Einsatz des Verfahrens rechtfertigen. Die vorliegende Arbeit betrachtet synoptisch die aktuellen Ansätze, die einen THS-Einsatz begründen könnten, und diskutiert die Übertragbarkeit bisheriger THS-Anwendungen, Studienergebnisse zur dopaminergen Transmission und zu neuronalen Oszillationen sowie tierexperimentelle Daten. In der Zusammenschau ist die aktuelle Datenlage durchaus zukunftsweisend für einige Symptome der Schizophrenie, rechtfertigt zum gegenwärtigen Zeitpunkt jedoch womöglich noch nicht den klinischen Einsatz der THS in der Behandlung. Vordringliche Aufgabe ist der Schluss bis dato bestehender Wissenslücken, um indikationsbegründende Hypothesen mit möglichst geringem Spekulationscharakter generieren zu können.

Abstract

Deep brain stimulation (DBS) has successfully advanced our treatment options for putative therapy-resistant neuropsychiatric diseases. Building on this strong foundation, more and more mental disorders in the stadium of therapy-resistance are considered as possible indications for DBS. Especially, schizophrenia with its associated severe and difficult to treat symptoms is gaining attention. This attention demands critical questions regarding the assumed mechanisms of DBS and its possible influence on the supposed pathophysiology of schizophrenia. Here, we synoptically compare current approaches and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as the transferability from other psychiatric disorders successfully treated with DBS. For this we consider recent advances in animal models of schizophrenic symptoms, results regarding the influence of DBS on dopaminergic transmission as well as data concerning neural oscillation and synchronisation. In conclusion, the use of DBS for some symptoms of schizophrenia seems to be a promising approach, but the lack of a comprehensive theory of the mechanisms of DBS as well as its impact on schizophrenia might hinder the use of DBS for schizophrenia at this point in time.

Literatur

  • 1 Benabid A L, Pollak P, Louveau A et al. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease.  Appl Neurophysiol. 1987;  50 (1 – 6) 344-346
  • 2 Deuschl G, Schade-Brittinger C, Krack P et al. A randomized trial of deep-brain stimulation for Parkinson’s disease.  N Engl J Med. 2006;  355 (9) 896-908
  • 3 Kupsch A, Benecke R, Muller J et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia.  N Engl J Med. 2006;  355 (19) 1978-1990
  • 4 Schuurman P R, Bosch D A, Bossuyt P M et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor.  N Engl J Med. 2000;  342 (7) 461-468
  • 5 Deuschl G, Schade-Brittinger C, Krack P et al. A randomized trial of deep-brain stimulation for Parkinson’s disease.  The New England journal of medicine. 2006;  355 (9) 896-908
  • 6 Skuban T, Flohrer, Klosterkoetter J et al. Psychiatrische Nebenwirkungen der tiefen Hirnstimulation bei M. Parkinson.  submitted
  • 7 Nuttin B, Cosyns P, Demeulemeester H et al. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder.  Lancet. 1999;  354 (9189) 1526
  • 8 Vandewalle V, Linden van der C, Groenewegen H J et al. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus.  Lancet. 1999;  353 (9154) 724
  • 9 Kuhn J, Gründler T OJ, Lenartz D et al. Deep brain stimulation for psychiatric disorders.  Dtsch Arztebl Int. 2010;  107 (7) 105-113
  • 10 Kuhn J, Gründler T OJ, Bauer R et al. Observations on cognitive control during successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence.  submitted
  • 11 Kuhn J, Lenartz D, Huff W et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications?.  J Neurol Neurosurg Psychiatry. 2007;  78 (10) 1152-1153
  • 12 Laxton A W, Tang-Wai D F, McAndrews M P et al. A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.  Ann Neurol. 2010;  68 (4) 521-534
  • 13 Huys D, Möller M, Kim E et al. Die historischen Grundlagen der tiefen Hirnstimulation bei psychiatrischen Erkrankungen.  Nervenarzt. 2011 Aug 25 [Epub ahead of print]
  • 14 Trottenberg T, Volkmann J, Deuschl G et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation.  Neurology. 2005;  64 (2) 344-346
  • 15 Damier P, Thobois S, Witjas T et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia.  Archives of general psychiatry. 2007;  64 (2) 170-176
  • 16 Cipriani A, Boso M, Barbui C. Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia.  Cochrane database of systematic reviews. 2009;  3 CD006324
  • 17 Kirkpatrick B, Fenton W S, Carpenter W T et al. The NIMH-MATRICS consensus statement on negative symptoms.  Schizophrenia bulletin. 2006;  32 (2) 214-219
  • 18 Os van J, Kapur Jr S. Schizophrenia.  Lancet. 2009;  374 (9690) 635-645
  • 19 Wittchen H U, Essau C A, Zerssen von D et al. Lifetime and six-month prevalence of mental disorders in the Munich Follow-Up Study.  European archives of psychiatry and clinical neuroscience. 1992;  241 (4) 247-258
  • 20 Perala J, Suvisaari J, Saarni S I et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population.  Archives of general psychiatry. 2007;  64 (1) 19-28
  • 21 Skantze K. Subjective quality of life and standard of living: a 10-year follow-up of out-patients with schizophrenia.  Acta psychiatrica Scandinavica. 1998;  98 (5) 390-399
  • 22 Pinikahana J, Happell B, Hope J et al. Quality of life in schizophrenia: a review of the literature from 1995 to 2000.  International journal of mental health nursing. 2002;  11 (2) 103-111
  • 23 Castle D J, Morgan V. Epidemiology. In: Mueser K T, Jeste D V, eds Clinical handbook of schizophrenia. New York: The Guilford Press; 2008: 14-24
  • 24 Andreasen N C, Carpenter Jr W T, Kane J M et al. Remission in schizophrenia: proposed criteria and rationale for consensus.  The American journal of psychiatry. 2005;  162 (3) 441-449
  • 25 Lambert M, Karow A, Leucht S et al. Remission in schizophrenia: validity, frequency, predictors, and patients’ perspective 5 years later.  Dialogues in clinical neuroscience. 2010;  12 (3) 393-407
  • 26 Krack P, Batir A, Van Blercom N et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease.  The New England journal of medicine. 2003;  349 (20) 1925-1934
  • 27 Oh M Y, Abosch A, Kim S H et al. Long-term hardware-related complications of deep brain stimulation.  Neurosurgery. 2002;  50 (6) 1268-1274 ; discussion 1274 – 1276
  • 28 Müller S, Christen M. Deep Brain Stimulation in Parkinsonian Patients – Ethical Evaluation of Cognitive, Affective, and Behavioral Sequelae.  AJOB Neuroscience. 2011;  2 (1) 3-13
  • 29 McIntyre C C, Savasta M, Kerkerian-Le Goff L et al. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both.  Clin Neurophysiol. 2004;  115 (6) 1239-1248
  • 30 Dostrovsky J O, Levy R, Wu J P et al. Microstimulation-induced inhibition of neuronal firing in human globus pallidus.  J Neurophysiol. 2000;  84 (1) 570-574
  • 31 Beurrier C, Bioulac B, Audin J et al. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons.  J Neurophysiol. 2001;  85 (4) 1351-1356
  • 32 Leiphart J W, Valone3 rd F H. Stereotactic lesions for the treatment of psychiatric disorders.  J Neurosurg. 2010;  113 (6) 1204-1211
  • 33 Ridding M C, Rothwell J C. Is there a future for therapeutic use of transcranial magnetic stimulation?.  Nat Rev Neurosci. 2007;  8 (7) 559-567
  • 34 Pascual-Leone A, Bartres-Faz D, Keenan J P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’.  Philos Trans R Soc Lond B Biol Sci. 1999;  354 (1387) 1229-1238
  • 35 Jandl M. The use of repetitive transcranial magnetic stimulation (rTMS) in auditory verbal hallucinations (AVH).  Fortschr Neurol Psychiatr. 2010;  78 (11) 632-643
  • 36 Aleman A, Sommer I E, Kahn R S. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis.  The Journal of clinical psychiatry. 2007;  68 (3) 416-421
  • 37 Slotema C W, Blom J D, Hoek H W et al. Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders.  The Journal of clinical psychiatry. 2010;  71 (7) 873-884
  • 38 Slotema C W, Blom J D, Weijer A D et al. Can low-frequency repetitive transcranial magnetic stimulation really relieve medication-resistant auditory verbal hallucinations? Negative results from a large randomized controlled trial.  Biological psychiatry. 2011;  69 (5) 450-456
  • 39 Payne N A, Prudic de J. Electroconvulsive therapy: Part I. A perspective on the evolution and current practice of ECT.  Journal of psychiatric practice. 2009;  15 (5) 346-368
  • 40 Kato N. Neurophysiological mechanisms of electroconvulsive therapy for depression.  Neuroscience research. 2009;  64 (1) 3-11
  • 41 Daniels J. Catatonia: clinical aspects and neurobiological correlates.  The Journal of neuropsychiatry and clinical neurosciences. 2009;  21 (4) 371-380
  • 42 Sanacora G, Mason G F, Rothman D L et al. Increased cortical GABA concentrations in depressed patients receiving ECT.  The American journal of psychiatry. 2003;  160 (3) 577-579
  • 43 Northoff G. What catatonia can tell us about „top-down modulation“: a neuropsychiatric hypothesis.  The Behavioral and brain sciences. 2002;  25 (5) 555-577 ; discussion 578 – 604
  • 44 Mikell C B, McKhann G M, Segal S et al. The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical intervention in schizophrenia.  Stereotact Funct Neurosurg. 2009;  87 (4) 256-265
  • 45 Kapur S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia.  Am J Psychiatry. 2003;  160 (1) 13-23
  • 46 Kapur S, Mizrahi R, Li M. From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis.  Schizophrenia research. 2005;  79 (1) 59-68
  • 47 Goto Y, Otani S, Grace A A. The Yin and Yang of dopamine release: a new perspective.  Neuropharmacology. 2007;  53 (5) 583-587
  • 48 Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D 2 receptors.  Prog Neuropsychopharmacol Biol Psychiatry. 2003;  27 (7) 1081-1090
  • 49 Juckel G, Schlagenhauf F, Koslowski M et al. Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics.  Psychopharmacology. 2006;  187 (2) 222-228
  • 50 Rosenfeld A J, Lieberman J A, Jarskog L F. Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive Deficits in Schizophrenia.  Schizophr Bull. 2011;  37 (5) 1077-1087
  • 51 Harvey P D, Koren D, Reichenberg A et al. Negative symptoms and cognitive deficits: what is the nature of their relationship?.  Schizophr Bull. 2006;  32 (2) 250-258
  • 52 Ventura J, Hellemann G S, Thames A D et al. Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis.  Schizophr Res. 2009;  113 (2 – 3) 189-199
  • 53 Juckel G, Schlagenhauf F, Koslowski M et al. Dysfunction of ventral striatal reward prediction in schizophrenia.  Neuroimage. 2006;  29 (2) 409-416
  • 54 Niv Y, Daw N D, Joel D et al. Tonic dopamine: opportunity costs and the control of response vigor.  Psychopharmacology. 2007;  191 (3) 507-520
  • 55 Schlaepfer T E, Cohen M X, Frick C et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.  Neuropsychopharmacology. 2008;  33 (2) 368-377
  • 56 Hamamura T, Harada T. Unique pharmacological profile of aripiprazole as the phasic component buster.  Psychopharmacology. 2007;  191 (3) 741-743
  • 57 Mazza M, Squillacioti M R, Pecora R D et al. Effect of aripiprazole on self-reported anhedonia in bipolar depressed patients.  Psychiatry Res. 2009;  165 (1 – 2) 193-196
  • 58 Leucht S, Corves C, Arbter D et al. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis.  Lancet. 2009;  373 (9657) 31-41
  • 59 Sandyk R. Pineal and habenula calcification in schizophrenia.  Int J Neurosci. 1992;  67 (1 – 4) 19-30
  • 60 Corfas G, Roy K, Buxbaum J D. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia.  Nat Neurosci. 2004;  7 (6) 575-580
  • 61 Williams N M, Preece A, Spurlock G et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia.  Mol Psychiatry. 2003;  8 (5) 485-487
  • 62 Yang J Z, Si T M, Ruan Y et al. Association study of neuregulin 1 gene with schizophrenia.  Mol Psychiatry. 2003;  8 (7) 706-9
  • 63 Steiner H, Blum M, Kitai S T et al. Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat.  Exp Neurol. 1999;  159 (2) 494-503
  • 64 Lecourtier L, Kelly P H. Bilateral lesions of the habenula induce attentional disturbances in rats.  Neuropsychopharmacology. 2005;  30 (3) 484-496
  • 65 Lecourtier L, Neijt H C, Kelly P H. Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia.  Eur J Neurosci. 2004;  19 (9) 2551-2560
  • 66 Heldt S A, Ressler K J. Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion.  Brain Res. 2006;  1073 – 1074 229-239
  • 67 Shepard P D, Holcomb H H, Gold J M. Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes.  Schizophr Bull. 2006;  32 (3) 417-421
  • 68 Paul G, Reum T, Meissner W et al. High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic metabolism in the naive rat.  Neuroreport. 2000;  11 (3) 441-444
  • 69 Meissner W, Harnack D, Reese R et al. High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats.  J Neurochem. 2003;  85 (3) 601-609
  • 70 Meissner W, Harnack D, Paul G et al. Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats.  Neurosci Lett. 2002;  328 (2) 105-108
  • 71 Meissner W, Reum T, Paul G et al. Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats.  Neurosci Lett. 2001;  303 (3) 165-168
  • 72 Winter C, Lemke C, Sohr R et al. High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat.  Exp Brain Res. 2008;  185 (3) 497-507
  • 73 Benazzouz A, Piallat B, Pollak P et al. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data.  Neurosci Lett. 1995;  189 (2) 77-80
  • 74 Benazzouz A, Gao D M, Ni Z G et al. Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat.  Neuroscience. 2000;  99 (2) 289-295
  • 75 Benazzouz A, Gao D, Ni Z et al. High frequency stimulation of the STN influences the activity of dopamine neurons in the rat.  Neuroreport. 2000;  11 (7) 1593-1596
  • 76 Robledo P, Feger J. Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data.  Brain Res. 1990;  518 (1 – 2) 47-54
  • 77 Bruet N, Windels F, Carcenac C et al. Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats.  J Neuropathol Exp Neurol. 2003;  62 (12) 1228-1240
  • 78 Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks.  Science. 2004;  304 (5679) 1926-1929
  • 79 Uhlhaas P J, Roux F, Singer W et al. The development of neural synchrony reflects late maturation and restructuring of functional networks in humans.  Proc Natl Acad Sci U S A. 2009;  106 (24) 9866-9871
  • 80 Stein von A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization.  Int J Psychophysiol. 2000;  38 (3) 301-313
  • 81 Uhlhaas P J, Singer W. Abnormal neural oscillations and synchrony in schizophrenia.  Nat Rev Neurosci. 2010;  11 (2) 100-113
  • 82 Boutros N. Lack of blinding in gating studies.  Schizophr Res. 2008;  103 (1 – 3) 336 ; author reply 337
  • 83 Spencer K M, Nestor P G, Perlmutter R et al. Neural synchrony indexes disordered perception and cognition in schizophrenia.  Proc Natl Acad Sci U S A. 2004;  101 (49) 17 288-17 293
  • 84 Uhlhaas P J, Haenschel C, Nikolic D et al. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia.  Schizophr Bull. 2008;  34 (5) 927-943
  • 85 Uhlhaas P J, Linden D E, Singer W et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia.  J Neurosci. 2006;  26 (31) 8168-8175
  • 86 Haenschel C, Linden D E, Bittner R A et al. Alpha phase locking predicts residual working memory performance in schizophrenia.  Biol Psychiatry. 2010;  68 (7) 595-598
  • 87 Rolls E T, Loh M, Deco G et al. Computational models of schizophrenia and dopamine modulation in the prefrontal cortex.  Nat Rev Neurosci. 2008;  9 (9) 696-709
  • 88 Teubner M D, Nixon J B, Rasser P E et al. Source localisation in a real human head.  Brain Topogr. 2005;  17 (4) 197-205
  • 89 Timmermann L, Gross J, Butz M et al. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography.  Neurol Clin Neurophysiol. 2004;  26
  • 90 Timmermann L, Gross J, Dirks M et al. The cerebral oscillatory network of parkinsonian resting tremor.  Brain. 2003;  126 (Pt 1) 199-212
  • 91 Kuhn A A, Kupsch A, Schneider G H et al. Reduction in subthalamic 8 – 35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease.  Eur J Neurosci. 2006;  23 (7) 1956-1960
  • 92 Kuhn A A, Williams D, Kupsch A et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance.  Brain. 2004;  127 (Pt 4) 735-746
  • 93 Meissner W, Leblois A, Hansel D et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations.  Brain. 2005;  128 (Pt 10) 2372-2382
  • 94 Gallinat J, Mulert C, Bajbouj M et al. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia.  Neuroimage. 2002;  17 (1) 110-127
  • 95 Javitt D C. When doors of perception close: bottom-up models of disrupted cognition in schizophrenia.  Annu Rev Clin Psychol. 2009;  5 249-275
  • 96 Adcock R A, Dale C, Fisher M et al. When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia.  Schizophr Bull. 2009;  35 (6) 1132-1141
  • 97 Arends M, Winterer G. Tiefe Hirnstimulation bei Schizophrenie – Ein neues Forschungsprojekt.  Nervenarzt. 2008;  Suppl 4 470
  • 98 Gross A, Joutsiniemi S L, Rimon R et al. Clozapine-induced QEEG changes correlate with clinical response in schizophrenic patients: a prospective, longitudinal study.  Pharmacopsychiatry. 2004;  37 (3) 119-122
  • 99 Andreasen N C. Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa Press; 1983
  • 100 Gschwandtner U, Zimmermann R, Pflueger M O et al. Negative symptoms in neuroleptic-naive patients with first-episode psychosis correlate with QEEG parameters.  Schizophr Res. 2009;  115 (2 – 3) 231-236
  • 101 Singer W. Neuronal synchrony: a versatile code for the definition of relations?.  Neuron. 1999;  24 (1) 49-65, 111 – 125
  • 102 Mundt A, Klein J, Joel D et al. High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced compulsive checking in rats.  Eur J Neurosci. 2009;  29 (12) 2401-2412
  • 103 Klavir O, Flash S, Winter C et al. High frequency stimulation and pharmacological inactivation of the subthalamic nucleus reduces ‘compulsive’ lever-pressing in rats.  Exp Neurol. 2009;  215 (1) 101-109
  • 104 Klavir O, Winter C, Joel D. High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus reduces ‘compulsive’ lever-pressing in rats.  Behav Brain Res. 2011;  216 (1) 84-93
  • 105 Djodari-Irani A, Klein J, Banzhaf J et al. HFS and pharmacological inactivation of the globus pallidus and nucleus entopeduncularis differentially affect quinpirole-induced compulsive checking in rats.  European Neuropsychopharmacology. 2010;  20 S281-S282
  • 106 Winter C, Flash S, Klavir O et al. The role of the subthalamic nucleus in ‘compulsive’ behavior in rats.  Eur J Neurosci. 2008;  27 (8) 1902-1911
  • 107 Hamani C, Nobrega J N. Deep brain stimulation in clinical trials and animal models of depression.  Eur J Neurosci. 2010;  32 (7) 1109-1117
  • 108 Hamani C, Diwan M, Macedo C E et al. Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats.  Biol Psychiatry. 2010;  67 (2) 117-124
  • 109 Vassoler F M, Schmidt H D, Gerard M E et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats.  J Neurosci. 2008;  28 (35) 8735-8739
  • 110 Rouaud T, Lardeux S, Panayotis N et al. Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation.  Proc Natl Acad Sci U S A. 2010;  107 (3) 1196-1200
  • 111 Winter C, Harnack D, Kupsch A. Deep brain stimulation for neurological and psychiatric diseases: animal experiments on effect and mechanisms.  Nervenarzt. 2010;  81 (6) 711-718
  • 112 Feldon J, Weiner I. Editorial: Special issue on modeling schizophrenia.  Behav Brain Res. 2009;  204 (2) 255-257
  • 113 Andreasen N C. The American concept of schizophrenia.  Schizophr Bull. 1989;  15 (4) 519-531
  • 114 Klosterkotter J. The revised definitions of schizophrenic disorders in ICD-10 and DSM-IV.  Fortschr Neurol Psychiatr. 1998;  66 (3) 133-143
  • 115 Kirkpatrick B, Fenton W S, Carpenter Jr W T et al. The NIMH-MATRICS consensus statement on negative symptoms.  Schizophr Bull. 2006;  32 (2) 214-219
  • 116 Carter C S, Barch D M, Buchanan R W et al. Identifying cognitive mechanisms targeted for treatment development in schizophrenia: an overview of the first meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative.  Biol Psychiatry. 2008;  64 (1) 4-10
  • 117 Nuechterlein K H, Green M F, Kern R S et al. The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity.  Am J Psychiatry. 2008;  165 (2) 203-213

1 Die Autoren J. Kuhn und M. Bodatsch haben in gleicher Weise zum Manuskript beigetragen.

Prof. Jens Kuhn

Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität Köln

Kerpener Str. 62

50937 Köln

Email: jens.kuhn@uk-koeln.de

    >