Ultraschall Med 2014; 35(06): 566-572
DOI: 10.1055/s-0034-1384882
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

First Experience with Three-Dimensional Speckle Tracking (3D Wall Motion Tracking) in Fetal Echocardiography

Erste Erfahrung mit dreidimensionalem Speckle Tracking (3D Wall Motion Tracking) in der fetalen Echokardiografie
C. Enzensberger
1   Department of OB&GYN, Philipps University, Division of Prenatal Medicine, Marburg
,
J. Degenhardt
2   Department of OB&GYN, Justus Liebig University, Division of Prenatal Medicine, Gießen
,
A. Tenzer
2   Department of OB&GYN, Justus Liebig University, Division of Prenatal Medicine, Gießen
,
A. Doelle
3   Ultrasound, Toshiba Medical Systems, Neuss
,
R. Axt-Fliedner
1   Department of OB&GYN, Philipps University, Division of Prenatal Medicine, Marburg
2   Department of OB&GYN, Justus Liebig University, Division of Prenatal Medicine, Gießen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

12. Februar 2014

18. Juni 2014

Publikationsdatum:
20. August 2014 (online)

Abstract

Objectives: Fetal cardiac function can be quantified by different methods. This is the first approach of real three-dimensional(3 D)-based speckle tracking echocardiography in the fetus to assess different cardiac strain parameters.

Methods: We present preliminary results of fetal global myocardial strain analyses. For fetal echocardiography a Toshiba Artida system was used. Based on an apical or basal four-chamber view of the fetal heart, raw data volumes with a high temporal resolution were acquired and digitally stored.

Results: 8 individual healthy fetuses with an echocardiogram performed between 21 and 37 weeks of gestation were included. The mean temporal resolution was 31.2 ± 4.3 volumes per second (vps). Basic parameters such as longitudinal and circumferential strain as well as advanced 3 D myocardial motion patterns such as area strain, rotation, twist and torsion were assessed.

Conclusion: Currently the assessment of fetal myocardial deformation parameters by 3 D speckle tracking seems to be technically feasible only in individual cases. In the future further development of this technique is necessary to improve its application in fetal echocardiography.

Zusammenfassung

Ziel: Die fetale kardiale Funktion kann durch verschiedene Methoden ermittelt werden. Dies ist der erste Versuch von dreidimensional basierter Speckle-Tracking-Echokardiografie beim Feten zur Bestimmung kardialer Deformierungsparameter.

Material und Methoden: Wir stellen vorläufige Ergebnisse fetaler globaler myokardialer Strain-Analyse vor. Dazu wurde für die fetale Echokardiografie ein Toshiba-Artida-System eingesetzt. Basierend auf apikalen oder basalen Vierkammerblicken des fetalen Herzens, wurden Rohdaten-Volumina mit hoher zeitlicher Auflösung erhoben und digital gespeichert.

Ergebnisse: Acht gesunde Feten zwischen der 21. und 37. Schwangerschaftswoche, bei denen eine Echokardiografie durchgeführt wurde, wurden eingeschlossen. Die durchschnittliche zeitliche Auflösung lag bei 31,2 ± 4,3 Volumen/Sekunde (vps). Longitudinaler und zirkumferenzieller Strain als Basisparameter sowie zukunftsweisende myokardiale 3D-Parameter wie Area Strain, Rotation, Twist und Torsion wurden bestimmt.

Zusammenfassung: Derzeit ist die Bestimmung fetaler myokardialer Deformierungsparameter technisch nur in Einzelfällen möglich. Für die Zukunft ist eine Weiterentwicklung der Technik notwendig, damit eine Anwendung in der fetalen Echokardiografie verbessert werden kann.

 
  • References

  • 1 Sahn DJ, Lange LW, Allen HD et al. Quantitative real-time cross-sectional echocardiography in the developing normal human fetus and newborn. Circulation 1980; 62: 588-597
  • 2 Allan LD, Joseph MC, Boyd EG et al. M-mode echocardiography in the developing human fetus. Br Heart J 1982; 47: 573-583
  • 3 Sahn D, Kisslo J. Report of the Council on Scientific Affairs: ultrasonic imaging of the heart: report of the Ultrasonography Task Force. Arch Intern Med 1991; 151: 1288-1294
  • 4 Deprest JA, Flake AW, Gratacos E et al. The making of fetal surgery. Prenat Diagn 2010; 30: 653-667
  • 5 Harada K, Tsuda A, Orino T et al. Tissue Doppler imaging in the normal fetus. Int J Cardiol 1999; 71: 227-234
  • 6 Paladini D, Lamberti A, Teodoro A et al. Tissue Doppler imaging of the fetal heart. Ultrasound Obstet Gynecol 2000; 16: 530-535
  • 7 Tutschek B, Zimmermann T, Buck T et al. Fetal tissue Doppler echocardiography: detection rates of cardiac structures and quantitative assessment of the fetal heart. Ultrasound Obstet Gynecol 2003; 21: 26-32
  • 8 Sutherland GR, Hatle L, Claus P et al. Doppler Myocardial Imaging, ed 1. Hasselt: BSWK; 2006
  • 9 Ho CY, Solomon SD. A clinician’s guide to tissue Doppler imaging. Circulation 2006; 113: e396-e398
  • 10 Di Salvo G, Russo MG, Paladini D et al. Two-dimensional strain to assess regional left and right ventricular longitudinal function in 100 normal foetuses. Eur J Echocardiogr 2008; 9: 754-756
  • 11 Ta-Shma A, Perles Z, Gavri S et al. Analysis of segmental and global function of the fetal heart using novel automatic functional imaging. J Am Soc Echocardiogr 2008; 21: 146-150
  • 12 Younoszai AK, Saudek DE, Emery SP et al. Evaluation of myocardial mechanics in the fetus by velocity vector imaging. J Am Soc Echocardiogr 2008; 21: 470-474
  • 13 Barker PC, Houle H, Li JS et al. Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac function: novel experience with velocity vector imaging. Echocardiography 2009; 26: 28-36
  • 14 Peng QH, Zhou QC, Zeng S et al. Evaluation of regional left ventricular longitudinal function in 151 normal fetuses using velocity vector imaging. Prenat Diagn 2009; 29: 1149-1155
  • 15 Matsui H, Germanakis I, Kulinskaya E et al. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound Obstet Gynecol 2011; 37: 150-157
  • 16 Pu DR, Zhou QC, Zhang M et al. Assessment of regional right ventricular longitudinal functions in fetus using velocity vector imaging technology. Prenat Diagn 2010; 30: 1057-1063
  • 17 Van Mieghem T, Giusca S, DeKoninck P et al. Prospective assessment of fetal cardiac function with speckle tracking in healthy fetuses and recipient fetuses of twin-to-twin transfusion syndrome. J Am Soc Echocardiogr 2010; 23: 301-308
  • 18 Willruth AM, Geipel AK, Fimmers R et al. Assessment of right ventricular global and regional longitudinal peak systolic strain, strain rate and velocity in healthy fetuses and impact of gestational age using a novel speckle/feature-tracking based algorithm. Ultrasound Obstet Gynecol 2011; 37: 143-149
  • 19 Willruth A, Geipel A, Berg C et al. Assessment of left ventricular global and regional longitudinal peak systolic strain, strain rate and velocity with feature tracking in healthy fetuses. Ultraschall in Med 2012; 33: E293-E298
  • 20 Willruth A, Geipel A, Berg C et al. Comparison of global and regional right and left ventricular longitudinal peak systolic strain, strain rate and velocity in healthy fetuses using a novel feature tracking technique. J Perinat Med 2011; 39: 549-556
  • 21 Willruth A, Geipel A, Berg C et al. Assessment of fetal global and regional ventricular function in congenital heart disease using a novel feature tracking technique. Ultraschall in Med 2012; 33: 251-257
  • 22 Germanakis I, Gardiner H. Assessment of fetal myocardial deformation using speckle tracking techniques. Fetal Diagn Ther 2012; 32: 39-46
  • 23 Germanakis I, Matsui H, Gardiner HM. Myocardial strain abnormalities in fetal congenital heart disease assessed by speckle tracking echocardiography. Fetal Diagn Ther 2012; 32: 123-130
  • 24 de Isla LP, Vivas D, Zamorano J. Three-Dimensional Speckle Tracking. Current Cardiovascular Imaging Reports 2008; 1: 25-29
  • 25 Koopman LP, Slorach C, Hui W et al. Comparison between different speckle tracking and color tissue Doppler techniques to measure global and regional myocardial deformation in children. J Am Soc Echocardiogr 2010; 23: 919-928
  • 26 Fontana A, Zambon A, Cesana F et al. Tissue Doppler, triplane echocardiography, and speckle tracking echocardiography: different ways of measuring longitudinal myocardial velocity and deformation parameters. A comparative clinical study. Echocardiography 2012; 29: 428-437
  • 27 Thomas G. Tissue Doppler echocardiography – a case of right tool, wrong use. Cardiovasc Ultrasound 2004; 2: 12
  • 28 Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time?. J Am Coll Cardiol 2006; 47: 1313-1327
  • 29 Forsey J, Friedberg MK, Mertens L. Speckle tracking echocardiography in pediatric and congenital heart disease. Echocardiography 2013; 30: 447-459
  • 30 Biswas M, Sudhakar S, Nanda NC et al. Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography 2013; 30: 88-105
  • 31 Storaa C, Aberg P, Lind B et al. Effect of angular error on tissue Doppler velocitiers and strain. Echocardiography 2003; 20: 581-587
  • 32 Kim HK, Sohn DW, Lee SE et al. Assessment of left ventricular rotation and torsion with echocardiography. J Am Soc Echocardiogr 2007; 20: 45-53
  • 33 Notomi Y, Lysyansky P, Setser RM et al. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005; 45: 2034-2041
  • 34 Takeuchi M, Nishikage T, Nakai H et al. The assessment of left ventricular twist in anterior wall myocardial infarction using two-dimensional speckle tracking imaging. J Am Soc Echocardiogr 2007; 20: 36-44
  • 35 Ashraf M, Li XK, Young MT et al. Delineation of cardiac twist by a sonographically based 2-dimensional strain analysis method: an in vitro validation study. J Ultrasound Med 2006; 25: 1193-1198
  • 36 Deng J, Rodeck CH. Current applications of fetal cardiac imaging technology. Curr Opin Obstet Gynecol 2006; 18: 177-184
  • 37 D’hooge J, Bijnens B, Jamal F et al. High frame rate myocardial integrated backscatter. Does this change our understanding of this acoustic parameter?. Eur J Echocardiogr 2000; 1: 32-41
  • 38 Ishii T, McElhinney DB, Harrild DM et al. Circumferential and longitudinal ventricular strain in the normal human fetus. J Am Soc Echocardiogr 2012; 25: 105-111
  • 39 Rychik J, Zeng S, Bebbington M et al. Speckle tracking- derived myocardial tissue deformation imaging in twin- twin transfusion syndrome: Differences in strain and strain rate between donor and recipient twins. Fetal Diagn Ther 2012; 32: 131-137
  • 40 Streeter DD. Gross morphology and fiber geometry of the heart. Berne RM, Sperelakis N, Geiger SR, eds Handbook of Physiology, The Cardiovascular System. Baltimore: Am. Physiol. SOC Williams & Wilkins Co; 1979: pp. 61-pp. 112
  • 41 Greenhaum RA, Ho SY, Gibson DG et al. Left ventricular fibre architecture in man. Br Heart J 1981; 45: 248-263
  • 42 Torrent-Guasp F. Estructura y funcio´n del corazo´ n. Rev Esp Cardiol 1998; 51: 91-102
  • 43 Seo Y, Ishizu T, Enomoto Y et al. Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 2011; 4: 358-365
  • 44 Cho GY, Chan J, Leano R et al. Comparison of two- dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 2006; 97: 1661-1666
  • 45 Amundsen BH, Helle-Valle T, Edvardsen T et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 2006; 47: 789-793
  • 46 Nguyen JS, Lakkis NM, Bobek J et al. Systolic and diastolic myocardial mechanics in patients with cardiac disease and preserved ejection fraction: Impact of left ventricular filling pressure. J Am Soc Echocardiogr 2010; 23: 1273-1280
  • 47 de Isla LP, Balcones DV, Fernandez-Golfin C et al. Three-dimensional-wall motion tracking: A new and faster tool for myocardial strain assessment: Comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr 2009; 22: 325-330
  • 48 Bihari P, Shelke A, Nwe TH et al. Strain measurement of abdominal aortic aneurysm with real-time 3D ultrasound speckle tracking. Eur J Vasc Endovasc Surg 2013; 45: 315-323
  • 49 Baccouche H, Maunz M, Beck T et al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 2012; 29: 668-677
  • 50 de Isla LP, Millán M, Lennie V et al. Area strain: normal values for a new parameter in healthy people. Rev Esp Cardiol 2011; 64: 1194-1197
  • 51 Ahmad H, Gayat E, Yodwut C et al. Evaluation of myocardial deformation in patients with sickle cell disease and preserved ejection fraction using three-dimensional speckle tracking echocardiography. Echocardiography 2012; 29: 962-969
  • 52 Kleijn SA, Aly MF, Terwee CB et al. Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging 2012; 13: 159-168
  • 53 Wen H, Liang Z, Zhao Y et al. Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from three-dimensional speckle-tracking echocardiography. Eur J Echocardiogr 2011; 12: 910-916
  • 54 Yodwut C, Weinert L, Klas B et al. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr 2012; 25: 978-985
  • 55 Brooks PA, Khoo NS, Mackie AS et al. Right ventricular function in fetal hypoplastic left heart syndrome. J Am Soc Echocariogr 2012; 25: 1068-1074