Semin Musculoskelet Radiol 2015; 19(02): 086-093
DOI: 10.1055/s-0035-1547370
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Technical Advancements in MR Neurography

Ananth J. Madhuranthakam
1   Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas
,
Robert E. Lenkinski
1   Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas
› Author Affiliations
Further Information

Publication History

Publication Date:
12 March 2015 (online)

Abstract

MR neurography (MRN) has evolved to become a clinically useful imaging modality for evaluating nerve pathologies. Anatomically, nerves are often surrounded by fat and blood vessels, which appear bright on MR images impeding the conspicuity of nerve visualization. Additionally, nerves are tortuous and would be preferable to visualize in three dimensions for proper diagnosis. Various technical advancements in the field of MR imaging in general have led to volumetric acquisitions with uniform fat and blood suppression. These advancements enabled optimized imaging protocols for better visualization of the nerves. This review article discusses some of these technical advancements that enabled current MRN protocols in routine clinical imaging and certain research techniques that may facilitate nerve disorder characterization following interventions.

 
  • References

  • 1 Filler AG, Kliot M, Howe FA , et al. Application of magnetic resonance neurography in the evaluation of patients with peripheral nerve pathology. J Neurosurg 1996; 85 (2) 299-309
  • 2 Stanisz GJ, Midha R, Munro CA, Henkelman RM. MR properties of rat sciatic nerve following trauma. Magn Reson Med 2001; 45 (3) 415-420
  • 3 Chhabra A, Andreisek G, Soldatos T , et al. MR neurography: past, present, and future. AJR Am J Roentgenol 2011; 197 (3) 583-591
  • 4 de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 2004; 230 (3) 652-659
  • 5 Mugler JP, Kiefer B, Brookeman JR. Three-dimensional T2-weighted imaging of the brain using very long spin-echo trains. Proceedings of the 8th Annual Meeting of the International Society for Magnetic Resonance in Medicine 2000. Available at: http://cds.ismrm.org/ismrm-2000/PDF3/0687.pdf . Accessed February 25, 2015
  • 6 Busse RF, Brau AC, Vu A, Michelich CR, Bayram E, Kijowski R, Reeder SB, Rowley HA. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008; 60 (3) 640-649
  • 7 Alsop DC. The sensitivity of low flip angle RARE imaging. Magn Reson Med 1997; 37 (2) 176-184
  • 8 Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med 2006; 55 (5) 1030-1037
  • 9 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38 (4) 591-603
  • 10 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42 (5) 952-962
  • 11 Thomsen C, Becker U, Winkler K, Christoffersen P, Jensen M, Henriksen O. Quantification of liver fat using magnetic resonance spectroscopy. Magn Reson Imaging 1994; 12 (3) 487-495
  • 12 Hamilton G, Middleton MS, Bydder M , et al. Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging 2009; 30 (1) 145-152
  • 13 Henkelman RM, Hardy PA, Bishop JE, Poon CS, Plewes DB. Why fat is bright in RARE and fast spin-echo imaging. J Magn Reson Imaging 1992; 2 (5) 533-540
  • 14 Bydder GM, Steiner RE, Blumgart LH, Khenia S, Young IR. MR imaging of the liver using short TI inversion recovery sequences. J Comput Assist Tomogr 1985; 9 (6) 1084-1089
  • 15 Silver MS, Joseph RI, Hoult DI. Highly selective π/2 and π pulse generation. J Magn Reson 1984; 59: 347-351
  • 16 Haase A, Frahm J, Hänicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985; 30 (4) 341-344
  • 17 Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153 (1) 189-194
  • 18 Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991; 18 (2) 371-383
  • 19 Hardy PA, Hinks RS, Tkach JA. Separation of fat and water in fast spin-echo MR imaging with the three-point Dixon technique. J Magn Reson Imaging 1995; 5 (2) 181-185
  • 20 An L, Xiang QS. Chemical shift imaging with spectrum modeling. Magn Reson Med 2001; 46 (1) 126-130
  • 21 Ma J. Breath-hold water and fat imaging using a dual-echo two-point Dixon technique with an efficient and robust phase-correction algorithm. Magn Reson Med 2004; 52 (2) 415-419
  • 22 Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 2005; 54 (3) 636-644
  • 23 Reeder SB, Yu H, Johnson JW , et al. T1- and T2-weighted fast spin-echo imaging of the brachial plexus and cervical spine with IDEAL water-fat separation. J Magn Reson Imaging 2006; 24 (4) 825-832
  • 24 Madhuranthakam AJ, Yu H, Shimakawa A , et al. T(2)-weighted 3D fast spin echo imaging with water-fat separation in a single acquisition. J Magn Reson Imaging 2010; 32 (3) 745-751
  • 25 Madhuranthakam AJ, Busse RF, Brittain JH, Rofsky NM, Alsop DC. Sensitivity of low flip angle SSFSE of the abdomen to cardiac motion [abstract 2523]. Proceedings of the 15th Annual Meeting of ISMRM 2007; Berlin, Germany
  • 26 Koktzoglou I, Li D. Diffusion-prepared segmented steady-state free precession: Application to 3D black-blood cardiovascular magnetic resonance of the thoracic aorta and carotid artery walls. J Cardiovasc Magn Reson 2007; 9 (1) 33-42
  • 27 Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C. Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 2007; 58 (5) 973-981
  • 28 Shankaranarayanan A, Xiao X, Shen H, Madhuranthakam AJ. MR nerve imaging using blood suppressed 3D T2 weighted imaging with uniform fat suppression [abstract 2462]. Proceedings of the 19th Annual Meeting of ISMRM 2011; Montreal, Canada
  • 29 Dietrich O, Biffar A, Baur-Melnyk A, Reiser MF. Technical aspects of MR diffusion imaging of the body. Eur J Radiol 2010; 76 (3) 314-322
  • 30 Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990; 15 (2) 287-304
  • 31 Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004; 22 (4) 275-282
  • 32 Takahara T, Hendrikse J, Kwee TC , et al. Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol 2010; 20 (5) 1221-1226
  • 33 Takahara T, Hendrikse J, Yamashita T , et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 2008; 249 (2) 653-660
  • 34 Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol 2003; 45 (3) 169-184
  • 35 Zhang Z, Meng Q, Chen Y , et al. 3-T imaging of the cranial nerves using three-dimensional reversed FISP with diffusion-weighted MR sequence. J Magn Reson Imaging 2008; 27 (3) 454-458
  • 36 Chhabra A, Soldatos T, Subhawong TK , et al. The application of three-dimensional diffusion-weighted PSIF technique in peripheral nerve imaging of the distal extremities. J Magn Reson Imaging 2011; 34 (4) 962-967
  • 37 Chhabra A, Subhawong TK, Bizzell C, Flammang A, Soldatos T. 3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages. Skeletal Radiol 2011; 40 (10) 1355-1360
  • 38 Madhuranthakam AJ, Busse RF, Brittain JH, Rofsky NM, Alsop DC. B1-insensitive fast spin echo using adiabatic square wave enabling of the echo train (SWEET) excitation. Magn Reson Med 2008; 59 (6) 1386-1393
  • 39 Willinek WA, Gieseke J, Kukuk GM , et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 2010; 256 (3) 966-975
  • 40 Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 2011; 65 (1) 96-107
  • 41 Deshmane A, Gulani V, Griswold MA, Seiberlich N. Parallel MR imaging. J Magn Reson Imaging 2012; 36 (1) 55-72
  • 42 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (2) 381-390
  • 43 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62 (1) 66-76
  • 44 Li X, Chen J, Hong G , et al. In vivo DTI longitudinal measurements of acute sciatic nerve traction injury and the association with pathological and functional changes. Eur J Radiol 2013; 82 (11) e707-e714
  • 45 Yamasaki T, Fujiwara H, Oda R , et al. In vivo evaluation of rabbit sciatic nerve regeneration with diffusion tensor imaging (DTI): correlations with histology and behavior. Magn Reson Imaging 2015; 33 (1) 95-101