Ultraschall Med 2016; 37(05): 503-508
DOI: 10.1055/s-0035-1553299
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Speckle-Tracking-Based Evaluation of Vascular Strain at Different Sites of the Arterial Tree in Healthy Adults

Speckle-Tracking basierte Analyse des vaskulären Strain unterschiedlicher Gefäße bei gesunden Erwachsenen
S. Charwat-Resl
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
,
A. Niessner
2   Department of Medicine II, Division of Cardiology, Medical University of Vienna, Austria
,
M. Mueller
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
,
P. E. Bartko
2   Department of Medicine II, Division of Cardiology, Medical University of Vienna, Austria
,
G. A. Giurgea
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
,
S. Zehetmayer
3   Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
,
A. Willfort-Ehringer
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
,
R. Koppensteiner
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
,
O. Schlager
1   Department of Medicine II, Division of Angiology, Medical University of Vienna, Austria
› Author Affiliations
Further Information

Publication History

25 January 2015

25 May 2015

Publication Date:
30 June 2015 (online)

Abstract

Purpose: Vascular ultrasound (US) allows the analysis of vascular strain by speckle-tracking. This study sought to assess the extent to which vas cular strain varies between different segments of the arterial tree. Furthermore, this study aimed to investigate the reproducibility of vascular strain determination as well as of the components that contribute to the variance of vascular strain measurements in different vascular beds.

Materials and Methods: Speckle-tracking was used to determine the vascular strain of the abdominal aorta (AA), the common carotid artery (CCA), the common femoral (CFA) and the popliteal artery (PA) of healthy adults. Intra- and interday reproducibility and the components of variance of vascular strain of the respective arteries were determined.

Results: A total of 589 US clips obtained in 10 healthy adults (7 males, 28.3 ± 3.2 years) were analyzable. Vascular strain was 7.2 ± 3.0 % in the AA, 5.7 ± 2.1 % in the CCA, 2.1 ± 1.1 % in the CFA and 1.9 ± 1.1 % in the PA. The intraday coefficients of variation of vascular strain were 6.2 % (AA), 3.9 % (CCA), 3.3 % (CFA) and 6.1 % (PA), and the interday coefficients of variation were 5.9 % (AA), 8.4 % (CCA), 10 % (CFA) and 4.6 % (PA). The variance of vascular strain mainly depended on the investigated vessel and subject. Individual DUS clips, the day of examination and the (right/left) body side (in paired arteries) had no impact on the variance of vascular strain.

Conclusion: Vascular strain substantially varies between different sites of the arterial tree. Speckle-tracking by DUS allows the reliable determination of vascular strain at different arterial sites.

Zusammenfassung

Ziel: Vaskulärer Strain (Gefäßwandspannung) kann mit Gefäßultraschall (US) und Speckle-Tracking bestimmt werden. Ziel dieser Studie ist es zu untersuchen, in welchem Ausmaß sich vaskulärer Strain zwischen einzelnen Gefäßabschnitten unterscheidet. Zudem sollen die Reproduzierbarkeit und die Varianzkomponenten vaskulärer Strain-Messungen in den verschiedenen Gefäßabschnitten bestimmt werden.

Material und Methoden: Mittels Speckle-Tracking wurde der vaskuläre Strain der Aorta abdominalis (AA), der Arteria carotis communis (ACC), der Arteria femoralis communis (AFC) sowie der Arteria poplitea (AP) bei gesunden Individuen bestimmt. Die Reproduzierbarkeit und die Varianzkomponenten der vaskulären Strain-Untersuchungen wurden je Proband durch 3 Untersuchungen pro Tag über 3 verschiedene Tagen ermittelt.

Ergebnisse: Insgesamt wurden 589 US-Clips von 10 gesunden Erwachsenen analysiert (7 Männer, 28,3 ± 3,2 Jahre). Der vaskuläre Strain betrug 7,2 ± 3,0 % in der AA, 5,7 ± 2,1 % in der ACC, 2,1 ± 1,1 % in der AFC und 1,9 ± 1,1 % in der AP. Der Variationskoeffizienten von vaskulärem Strain innerhalb eines Tages betrug 6,2 % (AA), 3,9 % (ACC), 3,3 % (AFC) und 6,1 % (AP), an unterschiedlichen Tagen betrug der Variationskoeffizienten 5,9 % (AA), 8,4 % (ACC), 10 % (AFC) und 4,6 % (AP). Die Varianz des vaskulären Strain hing vor allem vom untersuchten Gefäßabschnitt und dem jeweiligen Probanden ab. Der Untersuchungstag, der jeweilige US-Clip und die Körperseite (rechts/links bei paarig angelegten Gefäßen) hatte keinen Einfluss auf die Varianz.

Schlussfolgerung: Vaskulärer Strain variiert zwischen unterschiedlichen Gefäßabschnitten. Mit Speckle-Tracking kann vaskulärer Strain an unterschiedlichen Abschnitten des Gefäßsystems verlässlich bestimmt werden.

 
  • References

  • 1 Wilkinson IB, McEniery CM, Cockcroft JR. Arteriosclerosis and atherosclerosis: guilty by association. Hypertension 2009; 54: 1213-1215
  • 2 Munzel T, Sinning C, Post F et al. Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Ann Med 2008; 40: 180-196
  • 3 Wang X, Keith Jr JC, Struthers AD et al. Assessment of arterial stiffness, a translational medicine biomarker system for evaluation of vascular risk. Cardiovasc Ther 2008; 26: 214-223
  • 4 Dijk JM, van der Graaf Y, Grobbee DE et al. Carotid stiffness indicates risk of ischemic stroke and TIA in patients with internal carotid artery stenosis: the SMART study. Stroke 2004; 35: 2258-2262
  • 5 Yang EY, Chambless L, Sharrett AR et al. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2012; 43: 103-108
  • 6 Caviezel S, Dratva J, Schaffner E et al. Variability and reproducibility of carotid structural and functional parameters assessed with transcutaneous ultrasound – results from the SAPALDIA Cohort Study. Atherosclerosis 2013; 231: 448-455
  • 7 Zhang P, Guo R, Li Z et al. Effect of smoking on common carotid artery wall elasticity evaluated by echo tracking technique. Ultrasound Med Biol 2014; 40: 643-649
  • 8 Taniguchi R, Hoshina K, Hosaka A et al. Strain analysis of wall mption in abdominal aortic aneurysms. Ann Vasc Dis 2014; 7: 393-398
  • 9 Bjallmark A, Lind B, Peolsson M et al. Ultrasonographic strain imaging is superior to conventional non-invasive measures of vascular stiffness in the detection of age-dependent differences in the mechanical properties of the common carotid artery. Eur J Echocardiogr 2010; 11: 630-636
  • 10 Saito M, Okayama H, Inoue K et al. Carotid arterial circumferential strain by two-dimensional speckle-tracking: a novel parameter of arterial elasticity. Hypertens Res 2012; 35: 897-902
  • 11 Yang EY, Dokainish H, Virani SS et al. Segmental analysis of carotid arterial strain using speckle-tracking. J Am Soc Echocardiogr 2011; 24: 1276-1284 e5
  • 12 Zhang L, Liu Y, Zhang PF et al. Peak radial and circumferential strain measured by velocity vector imaging is a novel index for detecting vulnerable plaques in a rabbit model of atherosclerosis. Atherosclerosis 2010; 211: 146-152
  • 13 Shadwick RE. Mechanical design in arteries. J Exp Biol 1999; 202: 3305-3313
  • 14 London GM, Pannier B. Arterial functions: how to interpret the complex physiology. Nephrol Dial Transplant 2010; 25: 3815-3823
  • 15 Park HE, Cho GY, Kim HK et al. Validation of circumferential carotid artery strain as a screening tool for subclinical atherosclerosis. J Atheroscler Thromb 2012; 19: 349-356
  • 16 Van Bortel LM, Laurent S, Boutouyrie P et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30: 445-448
  • 17 Qasem A, Avolio A. Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse. Hypertension 2008; 51: 188-195