Handchir Mikrochir Plast Chir 2015; 47(05): 322-327
DOI: 10.1055/s-0035-1555867
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Analyse der Passgenauigkeit der Prothesenköpfe der Ascension® PyroCarbon-Fingermittelgelenksprothese

Analysis of Fit of the Ascension® PyroCarbon PIP Total Joint Component Heads
C. Ries
1   Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum zu Köln, Köln
,
W. Zhang
1   Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum zu Köln, Köln
,
L. P. Müller
1   Klinik und Poliklinik für Orthopädie und Unfallchirurgie, Universitätsklinikum zu Köln, Köln
,
B. Hohendorff
2   Abteilung für Hand-, Ästhetische und Plastische Chirurgie, Elbe Klinikum Stade, Stade
› Author Affiliations
Further Information

Publication History

eingereicht 10 December 2014

akzeptiert 02 June 2015

Publication Date:
29 July 2015 (online)

Zusammenfassung

Hintergrund: Die Ascension® PyroCarbon-Fingermittelgelenksprothese (Ascension® PyroCarbon-PIP-Gelenksprothese) ist in 4 verschiedenen Größen verfügbar. Im Idealfall sitzt der Prothesenkopf dem Knochen passgenau auf. Bisher wurde die Passgenauigkeit der Ascension® PyroCarbon-PIP-Gelenksprothese nicht untersucht.

Material und Methoden: Die Komponenten der Ascension® PyroCarbon-PIP-Gelenksprothese wurden bei 287 Phalangen von Körperspendern implantiert. Die Abstände vom Rand des Prothesenkopfes zum Rand des Knochens wurden auf Röntgenaufnahmen in der posterior-anterior und seitlichen Ansicht radial, ulnar, dorsal und palmar elektronisch gemessen.

Ergebnisse: Lediglich bei einem Finger fand sich eine genaue Passgenauigkeit der Köpfe der proximalen und korrespondierenden distalen Komponente im Verhältnis zum Knochen. Nur bei 17 (5 proximale, 12 distale) Prothesenkomponenten war der Kopf an allen Seiten genau passend. Insgesamt war der Kopf der proximalen Prothesenkomponente tendenziell zu groß und der distalen Prothesenkomponente tendenziell zu klein.

Schlussfolgerung: Die Köpfe der proximalen und distalen Komponente der Ascension® PyroCarbon-PIP-Gelenksprothese sind in Relation zum Knochen bis auf Ausnahmen nicht passgenau.

Abstract

Background: The Ascension pyroCarbon proximal interphalangeal (PIP) total joint is available in 4 different sizes, and ideally, the prosthesis head will be flush with the bone. Fit of the Ascension pyrocarbon PIP joint prosthesis has not yet been investigated.

Materials and Methods: The components of the Ascension pyrocarbon PIP total joint were inserted in 287 phalanges of human cadaver specimens. The distances from the edge of the component head to the edge of the bone were electronically measured radially, ulnarly, dorsally and palmarly on radiographs in posterior-anterior and lateral views.

Results: Only one finger had a precise fit of the heads of both, the proximal and corresponding distal component in relation to the bone. Only in 17 (5 proximal, 12 distal) prosthesis components the head did the bone fit on all sides. Overall, the proximal component head tends to be too large, while the distal component head tends to be too small.

Conclusion: With occasional exceptions, the proximal and distal component heads of the Ascension pyrocarbon PIP total joint do not accomodate the dimensions of finger phalanges.

 
  • Literatur

  • 1 Ries C, Zhang W, Burkhart KJ. et al. Morphology of the proximal and middle phalanx of fingers with regard to the Ascension PyroCarbon PIP total joint. J Hand Surg Eur 2014; 39: 596-603
  • 2 Hohendorff B, Zhang W, Müller LP. et al. Analyse des Designs der proximalen Komponente der Ascension® PyroCarbon-Fingermittelgelenksprothese im Verhältnis zur Morphologie der Grundphalanx. Handchir Mikrochir Plast Chir 2015; DOI: 10.1055/s-0035-1555866.
  • 3 Mahoney OM, Kinsey T. Overhang of the femoral component in total knee arthroplasty: risk factors and clinical consequences. J Bone Joint Surg Am 2010; 92: 1115-1121
  • 4 Skwara A, Figiel J, Knott T. et al. Primary stability of tibial components in TKA: in vitro comparison of two cementing techniques. Knee Surg Sports Traumatol Arthrosc 2009; 17: 1199-1205
  • 5 Abram SG, Marsh AG, Brydone AS. et al. The effect of tibial component sizing on patient reported outcome measures following uncemented total knee replacement. Knee 2014; 21: 955-959
  • 6 Bloebaum RD, Bachus KN, Mitchell W. et al. Analysis of the bone surface area in resected tibia. Implications in tibial component subsidence and fixation. Clin Orthop Relat Res 1994; 309: 2-10
  • 7 Vogt R, Aerni M, Ampofo C. et al. Die PIP-Prothese – Was haben wir gelernt? Erfahrungen über 10 Jahre. Handchir Mikrochir Plast Chir 2012; 44: 293-299
  • 8 Sweets TM, Stern PJ. Pyrolytic carbon resurfacing arthroplasty for osteoarthritis of the proximal interphalangeal joint of the finger. J Bone Joint Surg Am 2011; 93: 1417-1425
  • 9 Petscavage JM, Ha AS, Chew FS. Arthroplasty of the hand: radiographic outcomes of pyrolytic carbon proximal interphalangeal and metacarpophalangeal joint replacements. AJR Am J Roentgenol 2011; 197: 1177-1181
  • 10 Heers G, Telisselis P, Winkler F. et al. Mittelfristige Ergebnisse nach Implantation einer Pyrocarbonprothese bei Fingermittelgelenksarthrose. Z Orthop Unfall 2012; 150 324-328
  • 11 Bravo CJ, Rizzo M, Hormel KB. et al. Pyrolytic carbon proximal interphalangeal joint arthroplasty: Results with minimum two-year follow-up evaluation. J Hand Surg Am 2007; 32: 1-11
  • 12 Herren DB, Schindele S, Goldhahn J. et al. Problematic bone fixation with pyrocarbon implants in proximal interphalangeal joint replacement: short-term results. J Hand Surg Br 2006; 31: 643-651
  • 13 Hutt JR, Gilleard O, Hacker A. et al. Medium-term outcomes of pyrocarbon arthroplasty of the proximal interphalangeal joint. J Hand Surg Eur 2012; 37: 497-500
  • 14 McGuire DT, White CD, Carter SL. et al. Pyrocarbon proximal interphalangeal joint arthroplasty: outcomes of a cohort Study. J Hand Surg Eur 2012; 37: 490-496
  • 15 Reissner L, Schindele S, Hensler S. et al. Ten year follow-up of pyrocarbon implants for proximal interphalangeal joint replacement. J Hand Surg Eur 2014; 23: 582-586
  • 16 Tägil M. Geijer Abramo A. et al. Ten years’ experience with a pyrocarbon prosthesis replacing the proximal interphalangeal joint. A prospective clinical and radiographic follow-up. J Hand Surg Eur 2014; 39: 587-595
  • 17 Ono S, Shauver MJ, Chang KW. et al. Outcomes of pyrolytic carbon arthroplasty for the proximal interphalangeal joint at 44 months' mean follow-up. Plast Reconstr Surg 2012; 129: 1139-1150
  • 18 Heers G, Springorum HR, Baier C. et al. Proximal interphalangeal joint replacement with an unconstrained pyrocarbon prosthesis (Ascension ®): a long-term follow up. J Hand Surg Eur 2013; 38: 680-685
  • 19 Berndsen M, Garanin G, Lautenbach M. Endoprothetik der rheumatischen Hand. Obere Extremität 2011; 6: 246-252
  • 20 Cook SD, Beckenbaugh RD, Weinstein AM. et al. Pyrolite carbon implants in the metacarpophalangeal joint of baboons. Orthopedics 1983; 6: 952-961
  • 21 Daecke W, Veyel K, Wieloch P. et al. Osseointegration and mechanical stability of pyrocarbon and titanium hand implants in a load-bearing in vivo model for small joint arthroplasty. J Hand Surg Am 2006; 31: 90-97
  • 22 Schindele SF, Hensler S, Audigé L. et al. A modular surface gliding implant (CapFlex-PIP) for proximal interphalangeal joint osteoarthritis: a prospective case series. J Hand Surg Am 2015; 40: 334-340