Semin Musculoskelet Radiol 2015; 19(05): 463-474
DOI: 10.1055/s-0035-1569250
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Advanced Techniques in Musculoskeletal Oncology: Perfusion, Diffusion, and Spectroscopy

Pedro A. Gondim Teixeira
1   Service D'imagerie Guilloz, Hôpital Central, CHU Nancy, France
2   Université de Lorraine, Nancy, France
5   Centre Chirurgical Emile Gallé, Nancy, France
,
Marine Beaumont
2   Université de Lorraine, Nancy, France
,
Hossu Gabriela
2   Université de Lorraine, Nancy, France
,
Chen Bailiang
2   Université de Lorraine, Nancy, France
,
Jean-luc Verhaeghe
3   Service de Chirurgie Institut de Cancerologie de Lorraine, Vandoeuvre-les-Nancy, France
,
François Sirveaux
4   Service de Chirurgie Traumatologique et Orthopédique, France
,
Alain Blum
1   Service D'imagerie Guilloz, Hôpital Central, CHU Nancy, France
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2015 (online)

Abstract

The imaging characterization of musculoskeletal tumors can be challenging, and a significant number of lesions remain indeterminate when conventional imaging protocols are used. In recent years, clinical availability of functional imaging methods has increased. Functional imaging has the potential to improve tumor detection, characterization, and follow-up. The most frequently used functional methods are perfusion imaging, diffusion-weighted imaging (DWI), and MR proton spectroscopy (MRS). Each of these techniques has specific protocol requirements and diagnostic pitfalls that need to be acknowledged to avoid misdiagnoses. Additionally, the application of functional methods in the MSK system has various technical issues that need to be addressed to ensure data quality and comparability. In this article, the application of contrast-enhanced perfusion imaging, DWI, and MRS for the evaluation of bone and soft tissue tumors is discussed, with emphasis on acquisition protocols, technical difficulties, and current clinical indications.

 
  • References

  • 1 Fletcher CDM, Unni KK, Mertens F. Pathology & Genetics: Tumours of Soft Tissue and Bone. Lyon, France: IARC; 2002
  • 2 Ruggieri P, Mavrogenis AF, Mercuri M. Quality of life following limb-salvage surgery for bone sarcomas. Expert Rev Pharmacoecon Outcomes Res 2011; 11 (1) 59-73
  • 3 Foster RCB, Stavas JM. Bone and soft tissue ablation. Semin Intervent Radiol 2014; 31 (2) 167-179
  • 4 Springfield D. Surgery for MSK tumors: 1971–2011. Skeletal Radiol 2011; 40 (9) 1233-1237
  • 5 Allison DC, Carney SC, Ahlmann ER , et al. A meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma 2012; 2012: 704872
  • 6 Wu JS, Hochman MG. Soft-tissue tumors and tumorlike lesions: a systematic imaging approach. Radiology 2009; 253 (2) 297-316
  • 7 Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265 (2) 340-356
  • 8 Wang X, Jacobs MA, Fayad L. Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR Biomed 2011; 24 (6) 750-763
  • 9 Ueda T, Naka N, Araki N , et al. Validation of radiographic response evaluation criteria of preoperative chemotherapy for bone and soft tissue sarcomas: Japanese Orthopaedic Association Committee on Musculoskeletal Tumors Cooperative Study. J Orthop Sci 2008; 13 (4) 304-312
  • 10 Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res 2013; 99 (1, Suppl): S115-S123
  • 11 Genovese E, Canì A, Rizzo S, Angeretti MG, Leonardi A, Fugazzola C. Comparison between MRI with spin-echo echo-planar diffusion-weighted sequence (DWI) and histology in the diagnosis of soft-tissue tumours. Radiol Med (Torino) 2011; 116 (4) 644-656
  • 12 van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW , et al. Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 2004; 233 (2) 493-502
  • 13 Fayad LM, Wang X, Salibi N , et al. A feasibility study of quantitative molecular characterization of musculoskeletal lesions by proton MR spectroscopy at 3 T. AJR Am J Roentgenol 2010; 195 (1) W69-75
  • 14 Erlemann R, Reiser MF, Peters PE , et al. Musculoskeletal neoplasms: static and dynamic Gd-DTPA—enhanced MR imaging. Radiology 1989; 171 (3) 767-773
  • 15 Gondim Teixeira PA, Gervaise A, Louis M , et al. Musculoskeletal wide detector CT: principles, techniques and applications in clinical practice and research. Eur J Radiol 2015; 84 (5) 892-900
  • 16 Gay F, Pierucci F, Zimmerman V , et al. Contrast-enhanced ultrasonography of peripheral soft-tissue tumors: feasibility study and preliminary results. Diagn Interv Imaging 2012; 93 (1) 37-46
  • 17 Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging—parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 1994; 192 (3) 835-843
  • 18 Gondim Teixeira PA, Hossu G, Lecocq S, Razeto M, Louis M, Blum A. Bone marrow edema pattern identification in patients with lytic bone lesions using digital subtraction angiography-like bone subtraction on large-area detector computed tomography. Invest Radiol 2014; 49 (3) 156-164
  • 19 van der Woude HJ, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL. Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization?. Radiology 1998; 208 (3) 821-828
  • 20 Teixeira PAG, Chanson A, Beaumont M , et al. Dynamic MR imaging of osteoid osteomas: correlation of semiquantitative and quantitative perfusion parameters with patient symptoms and treatment outcome. Eur Radiol 2013; 23 (9) 2602-2611
  • 21 Budzik J-F, Lefebvre G, Forzy G, El Rafei M, Chechin D, Cotten A. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study. Eur Radiol 2014; 24 (12) 3217-3223
  • 22 Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ. Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991; 15 (4) 621-628
  • 23 Tofts PS, Brix G, Buckley DL , et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10 (3) 223-232
  • 24 Heye T, Davenport MS, Horvath JJ , et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 2013; 266 (3) 801-811
  • 25 Otton J, Morton G, Schuster A , et al. A direct comparison of the sensitivity of CT and MR cardiac perfusion using a myocardial perfusion phantom. J Cardiovasc Comput Tomogr 2013; 7 (2) 117-124
  • 26 De Simone M, Muccio CF, Pagnotta SM, Esposito G, Cianfoni A. Comparison between CT and MR in perfusion imaging assessment of high-grade gliomas. Radiol Med (Torino) 2013; 118 (1) 140-151
  • 27 Gondim Teixeira PA, Lecocq S, Louis M , et al. Wide area detector CT perfusion: Can it differentiate osteoid osteomas from other lytic bone lesions?. Diagn Interv Imaging 2014; 95 (6) 587-594
  • 28 Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014; 271 (2) 499-511
  • 29 Eilber FC, Rosen G, Eckardt J , et al. Treatment-induced pathologic necrosis: a predictor of local recurrence and survival in patients receiving neoadjuvant therapy for high-grade extremity soft tissue sarcomas. J Clin Oncol 2001; 19 (13) 3203-3209
  • 30 Menendez LR, Ahlmann ER, Savage K, Cluck M, Fedenko AN. Tumor necrosis has no prognostic value in neoadjuvant chemotherapy for soft tissue sarcoma. Clin Orthop Relat Res 2007; 455 (455) 219-224
  • 31 Chenevert TL, Stegman LD, Taylor JMG , et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000; 92 (24) 2029-2036
  • 32 Khoo MMY, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 2011; 40 (6) 665-681
  • 33 Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 2014; 203 (3) 560-572
  • 34 Nagata S, Nishimura H, Uchida M , et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med 2008; 26 (5) 287-295
  • 35 Oka K, Yakushiji T, Sato H , et al. Usefulness of diffusion-weighted imaging for differentiating between desmoid tumors and malignant soft tissue tumors. J Magn Reson Imaging 2011; 33 (1) 189-193
  • 36 Mulkern RV, Schwartz RB. In re: characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 2003; 24 (7) 1489-1490 ; author reply 1490–1491
  • 37 Sundaram M, McGuire MH, Schajowicz F. Soft-tissue masses: histologic basis for decreased signal (short T2) on T2-weighted MR images. AJR Am J Roentgenol 1987; 148 (6) 1247-1250
  • 38 Subhawong TK, Jacobs MA, Fayad LM. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 2014; 34 (5) 1163-1177
  • 39 Gondim Teixeira PA, Gay F, Chen B et al. Diffusion weighted magnetic resonance imaging of the initial characterization of non-fatty soft tissue tumors: correlation between T2 signal intensity and ADC values. In press
  • 40 Padhani AR, Liu G, Koh DM , et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11 (2) 102-125
  • 41 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Techniques for diffusion-weighted imaging of bone marrow. Eur J Radiol 2005; 55 (1) 64-73
  • 42 Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging 2006; 24 (6) 1207-1220
  • 43 Bonarelli C, Gondim Teixeira PA, Hossu G , et al. Impact of ROI positioning and lesion morphology on ADC value analysis for the differentiation between benign and malignant non-fatty soft tissue lesions. AJR Am J Roentgenol 2015; 205 (1) W106-W113
  • 44 Subhawong TK, Durand DJ, Thawait GK, Jacobs MA, Fayad LM. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses?. Skeletal Radiol 2013; 42 (11) 1583-1592
  • 45 Dudeck O, Zeile M, Pink D , et al. Diffusion-weighted magnetic resonance imaging allows monitoring of anticancer treatment effects in patients with soft-tissue sarcomas. J Magn Reson Imaging 2008; 27 (5) 1109-1113
  • 46 Hayashida Y, Yakushiji T, Awai K , et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 2006; 16 (12) 2637-2643
  • 47 Wang CK, Li CW, Hsieh TJ, Chien SH, Liu GC, Tsai KB. Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 2004; 232 (2) 599-605
  • 48 Fayad LM, Barker PB, Jacobs MA , et al. Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 2007; 188 (6) 1513-1520
  • 49 Fayad LM, Barker PB, Bluemke DA. Molecular characterization of musculoskeletal tumors by proton MR spectroscopy. Semin Musculoskelet Radiol 2007; 11 (3) 240-245
  • 50 Aboagye EO, Bhujwalla ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 1999; 59 (1) 80-84
  • 51 Subhawong TK, Wang X, Durand DJ , et al. Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 2012; 198 (1) 162-172
  • 52 Teixeira PAG, Hossu G, Kauffmann F , et al. Influence of calcium on choline measurements by 1H MR spectroscopy of thigh muscles. Eur Radiol 2014; 24 (6) 1309-1319
  • 53 Russo F, Mazzetti S, Grignani G , et al. In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy. Eur Radiol 2012; 22 (5) 1131-1139
  • 54 Parmar H, Lim TCC, Yin H , et al. Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results. Eur J Radiol 2005; 55 (3) 401-408
  • 55 Fayad LM, Wang X, Blakeley JO , et al. Characterization of peripheral nerve sheath tumors with 3T proton MR spectroscopy. AJNR Am J Neuroradiol 2014; 35 (5) 1035-1041
  • 56 Wang X, Salibi N, Fayad LM, Barker PB. Proton magnetic resonance spectroscopy of skeletal muscle: a comparison of two quantitation techniques. J Magn Reson 2014; 243: 81-84