Thromb Haemost 2003; 89(01): 122-131
DOI: 10.1055/s-0037-1613551
Platelets and Blood Cells
Schattauer GmbH

Plasma membrane Ca2+-ATPase isoform 4b is phosphorylated on tyrosine 1176 in activated human platelets

Tina C. Wan
1   Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
,
Martin Zabe
2   Stiftung Caesar Center of Advanced European Studies and Research, Bonn, Germany
,
William L. Dean
1   Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 26. Juni 2002

Accepted after resubmission 30. Oktober 2002

Publikationsdatum:
09. Dezember 2017 (online)

Summary

Plasma membrane Ca2+-ATPase isoform 4b (PMCA4b) is phosphorylated on a tyrosine residue during platelet activation resulting in inhibition of its ATPase activity. We now report that tyrosine 1176 (Y1176) in the carboxyl (C-) terminal domain of PMCA4b is the phosphorylated residue. Two tyrosine residues located in the C-terminus of PMCA4b, Y1122 and Y1176 can be removed by calpain-dependent cleavage. This truncation removes all of the tyrosine phosphates added to PMCA during platelet activation. Sequence analysis indicates that Y1176 is a likely substrate for focal adhesion kinase (FAK), while Y1122 is not located in a tyrosine phosphorylation motif. This is the same residue we reported earlier to be phosphorylated by Src kinase in vitro. Thus we conclude that Y1176 is the only tyrosine phosphorylated during platelet activation. Results of co-immunoprecipitation, treatment with tyrosine kinase inhibitors and integrin inhibition experiments suggest that FAK is responsible for PMCA4b tyrosine phosphorylation during platelet activation.

 
  • References

  • 1 Carafoli E. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci USA 2002; 99: 1115-22.
  • 2 Rink TJ, Sage SO. Calcium signaling in human platelets. Annu Rev Physiol 1990; 52: 431-49.
  • 3 Haynes DH.. Effects of cyclic nucleotides and protein kinases on platelet calcium homeostasis and mobilization. Platelets (Edinb.) 1993; 4: 231-42.
  • 4 Rosado JA, Sage SO. Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem 2000; 30 (275) 19529-35.
  • 5 Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J 1994; 8: 993-1002.
  • 6 Garcia ML, Strehler EE. Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front Biosci 1999; 4: D869-82.
  • 7 Dean WL, Chen D, Brandt PC, Vanaman TC. Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 1997; 272: 15113-9.
  • 8 Paszty K, Kovacs T, Lacabaratz-Porret C, Papp B, Enouf J, Filoteo AG, Penniston JT, Enyedi A. Expression of hPMCA4b, the major form of the plasma membrane calcium pump in megakaryoblastoid cells is greatly reduced in mature human platelets. Cell Calcium 1998; 24: 129-35.
  • 9 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacterio-phage T4. Nature 1970; 227: 680-5.
  • 10 Niggli V, Adunyah ES, Penniston JT, Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem 1981; 256: 395-401.
  • 11 Stauffer TP, Guerini D, Carafoli E. Tissue Distribution of the Four Gene Products of the Plasma Membrane Ca2+-Pump. J Biol Chem 1995; 270: 12184-90.
  • 12 Borke JL, Caride A, Verma AK, Penniston JT, Kumar R. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules. Am J Physiol 1989; 257: F842-9.
  • 13 Brini M, Bano D, Manni S, Rizzuto R, Carafoli E. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signaling. EMBO J 2000; 19: 4926-35.
  • 14 Zabe M, Dean WL. Platelet plasma membrane Ca2+ ATPase associates with the cytoskeleton in activated platelets through a PDZ-binding domain. J Biol Chem 2001; 276: 14704-9.
  • 15 Salamino F, Sparatore B, Melloni E, Michetti M, Viotti PL, Pontremoli S, Carafoli E. The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. Cell Calcium 1994; 15: 28-35.
  • 16 James P, Vorherr T, Krebs J, Morelli A, Castello G, McCormick DJ, Penniston JT, De Flora A, Carafoli E. Modulation of erythrocyte Ca2+-ATPase by selective calpain cleavage of the calmodulin-binding domain. J Biol Chem 1989; 264: 8289-96.
  • 17 Rutledge TW, Whiteheart SW. SNAP-23 Is a target for calpain cleavage in activated platelets. J Biol Chem 2002; 277: 37009-15.
  • 18 Dean WL, Pope JE, Brier ME, Aronoff GR. Platelet Calcium Transport in Hypertension. Hypertension 1994; 23: 31-7.
  • 19 Blankenship KA, Dawson CB, Aronoff GR, Dean WL. Tyrosine phosphorylation of human platelet plasma membrane Ca2+-ATPase. Hypertension 2000; 35: 103-7.
  • 20 Strehler EE, James P, Fischer R, Heim R, Vorherr T, Filoteo AG, Penniston JT, Carafoli E. Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. J Biol Chem 1990; 265: 2835-42.
  • 21 Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol 1999; 71: 435-78.
  • 22 Jackson SP, Schoenwaelder SM, Yuan Y, Salem HH, Cooray P. Non-receptor protein tyrosine kinases and phosphatases in human platelets. Thromb Haemost 1996; 76: 640-50.
  • 23 Dean WL, Quinton TM. Distribution of plasma membrane Ca2+-ATPase and inositol 1,4,5-trisphosphate receptor in human platelet membranes. Cell Calcium 1995; 17: 65-70.
  • 24 Phillips DR, Jakabova M. Ca2+-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+. J Biol Chem 1977; 252: 5602-5.
  • 25 Golden A, Nemeth SP, Brugge JS. Blood platelets express high levels of the pp60c-Src-specific tyrosine kinase activity. Proc Natl Acad Sci USA 1986; 83: 852-6.
  • 26 Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271: 695-701.
  • 27 Hu DE, Fan TP. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A. Br J Pharmacol 1995; 114: 262-8.
  • 28 Fan TP, Jaggar R, Bicknell R. Controlling the vasculature: angiogenesis, antiangiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 1995; 16: 57-66.
  • 29 Kim BY, Ahn SC, Oh HK, Lee HS, Mheen TI, Rho HM, Ahn JS. Inhibition of PDGF-induced phospholipase D but not phospholipase C activation by herbimycin A. Biochem Biophys Res Commun 1995; 212: 1061-7.
  • 30 Wu Y, Ozaki Y, Inoue K, Satoh K, Ohmori T, Yatomi Y, Owadab K. Differential activation and redistribution of c-Src and Fyn in platelets, assessed by MoAb specific for C-terminal tyrosine-dephosphorylated c-Src and Fyn. Biochim Biophys Acta 2000; 1497: 27-36.
  • 31 Kralisz U, Cierniewski CS. Activity of pp60c-Src and association of pp60c-Src, pp54/58lyn, pp60fyn, and pp72syk with the cytoskeleton in platelets activated by collagen. IUBMB Life 2000; 49 (01) 33-42.
  • 32 Dorahy DJ, Burns GF. Active Lyn protein tyrosine kinase is selectively enriched within membrane microdomains of resting platelets. Biochem J 1998; 333 (Pt 2) 373-9.
  • 33 Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci 1994; 19: 464-9.
  • 34 Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379: 645-8.
  • 35 Dash D, Aepfelbacher M, Siess W. The association of pp125FAK, pp60Src, CDC42Hs and Rap1B with the cytoskeleton of aggregated platelets is a reversible process regulated by calcium. FEBS Lett 1995; 363: 231-4.
  • 36 Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol 1992; 119: 905-12.
  • 37 Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, Pawson T. SH2 domain specificity and activity modified by a single residue. Nature 1994; 369: 502-5.
  • 38 Nair SA, Kim MH, Warren SD, Choi S, Zhou S, Cantley LC, Hangauer DG. Identification of efficient pentapeptide substrates for the tyrosine kinase pp60c-Src. J Med Chem 1995; 38: 4276-83.
  • 39 Shattil SJ, Haimovich B, Cunningham M, Lipfert L, Parsons JT, Ginsberg MH, Brugge JS. Tyrosine phosphorylation of pp125FAK in platelets requires coordinated signaling through integrin and agonist receptors. J Biol Chem 1994; 269: 14738-45.
  • 40 Falcon C, Pfliegler G, Deckmyn H, Vermylen J. The platelet insulin receptor: detection, partial purification, and search for a function. Biochem Biophys Res Commun 1988; 157: 1190-6.
  • 41 Oda A, Ikeda Y, Ochs HD, Druker BJ, Ozaki K, Handa M, Ariga T, Sakiyama Y, Witte ON, Wahl MI. Rapid tyrosine phosphorylation and activation of Bruton’s tyrosine/Tec kinases in platelets induced by collagen binding or CD32 cross-linking. Blood 2000; 95: 1663-70.
  • 42 Kim E, DeMarco SJ, Marfatia SM, Chishti AH, Sheng M, Strehler EE. Plasma membrane Ca2+ ATPase isoform 4b binds to membrane-associated guanylate kinase (MAGUK) proteins via their PDZ (PSD-95/Dlg/ZO-1) domains. J Biol Chem 1998; 273: 1591-5.