Osteologie 2012; 21(04): 296-300
DOI: 10.1055/s-0037-1621964
Original article
Schattauer GmbH

A novel orthotopic animal model of human chondrosarcoma

Ein neuartiges orthotopes Tiermodell für das Chondrosarkom
K. Horas
1   Klinik für Orthopädie und orthopädische Chirurgie, Universitätsmedizin Mainz—Department of Orthopaedic Surgery, University Medical Center, Mainz, Germany
,
A. A. Kurth
2   Mainz, Germany
,
M. Tonak
1   Klinik für Orthopädie und orthopädische Chirurgie, Universitätsmedizin Mainz—Department of Orthopaedic Surgery, University Medical Center, Mainz, Germany
› Author Affiliations
Further Information

Publication History

received: 19 July 2012

accepted: 31 August 2012

Publication Date:
04 January 2018 (online)

Summary

Chondrosarcoma is the second most common primary malignant bone tumour in humans. Currently, surgical resection is the only appropriate curative approach as it is relatively unresponsive to traditional chemoand radiotherapy. However, a complete resection is often hindered due to the proximity to organs resulting in a poor outcome of this challenging malignancy. Few novel antitumour agents have been tested on different chondrosarcoma cell lines in vitro so far. In order to qualify new agents in vivo, animal models are often used in which cell lines are subcutaneously injected prior to chemotherapeutical treatment. These types of models often lack relevance to the human chondrosarcoma as the number of agents that fail in the clinic far outweighs those considered effective on in vivo studies. Orthotopic xenograft models however are of much more predictive value. Thus, the development of a novel orthotopic animal model for human chondrosarcoma using a three-dimensional matrix carrying tumour cells, was the aim of this study. For that purpose, SW-1353, a human bone chondrosarcoma cell line, was first cultured in MatrigelTM, followed by orthotopic implantation into10 SCID mice by intra-tibial injection. After 40 days, the animals developed localized bone tumours verified by radiographic and histological examinations. Radiologic and histological sections showed osteolysis and invasive tumour growth. This study demonstrates a promising new method for effective and reproducible orthotopic implantation of human chondrosarcoma. The presented animal model allows further examination and can be used as a predictive preclinical model for anticancer drug activity in humans.

Zusammenfassung

Das Chondrosarkom ist der zweithäufigste primäre bösartige Knochentumor beim Menschen. Derzeit ist die chirurgische Resektion der einzige geeignete kurative Ansatz, da konventionelle herkömmlichen Chemo und Strahlentherapiekonzepte wenig erfolgreich sind. Allerdings ist eine onkologisch notwendige weite Resektion des Tumors oftmals nicht möglich, wegen der räumlichen Nähe zu lebenswichtigen Strukturen. Dies führt dann zu einer schlechten Prognose dieser an spruchs vollen Neoplasie. Einige moderne antineoplastische Substanzen sind bisher auf verschiedenen Chondrosarkom-Zelllinien in vitro getestet worden. Um neue Therapieansätze in vivo zuüberprüfen, werden Tiermodelle verwendet, bei denen vor der chemotherapeutischen Behandlung häufig Zell linien subkutan injiziert werden. Diesen Tiermodellen mangelt es oft an klinischer Relevanz für die Situation des humanen Chondrosarkoms. Das zeigt sich in der hohen Versagensrate von Substanzen in der Klinik, die in In-vivo-Modellen erfolgreich erschienen. Orthotope Xenograft-Modelle haben jedoch viel mehr Aussagekraft. Somit war das Ziel der Untersuchungen die Entwicklung eines neuartigen orthotopen Tiermodells für das Chondrosarkom, unter Verwendung einer dreidimensionalen Matrix als Träger für die Tumorzellen. Zu diesem Zweck wurde SW-1353, eine humane Chondrosarkom-Zelllinie, zuerst in Matrigel® kultiviert und dann in zehn SCID-Mäuse durch eine intratibiale Injektion orthotop implantiert. Nach 40 Tagen entwickelten die Tiere lokale Knochentumoren, die durch radiologische und histologische Untersuchungen verifiziert werden konnten. Konventionelle Röntgenbilder und histologische Schnitte zeigten Osteolysen und invasives Tumorwachstum. Diese Studie zeigt eine viel versprechende neue Methode für eine effektive und reproduzierbare orthotope Implantation von humanen Chondrosarkomzellen. Das vorgestellte Tiermodell erlaubt weitere Untersuchungen und kann als prädiktives präklinisches Modell zurÜberprüfung der Effektivität neuartiger Therapieansätze beim Chondrosarkom eingesetzt werden.

 
  • References

  • 1 Greenspan A, Jundt G, Remagen W. Differential diagnosis in orthopaedic oncology. Philadelphia: Lippincott Williams& Wilkins; 2007
  • 2 Khurana JS, McCarthy EF, Zhang PJ. Essentials in bone and soft-tissue pathology. New York: Springer; 2010
  • 3 Schajowicz F, Sissons HA, Sobin LH. The World Health Organization's histologic classification of bone tumors. A commentary on the second edition. Cancer 1995; 75 (05) 1208-1214.
  • 4 Tonak M, Kurth AA. Chondrogene Knochentumoren. Osteologie 2009; 18: 191-199.
  • 5 Rizzo M, Ghert MA, Harrelson JM, Scully SP. Chondrosarcoma of bone: analysis of 108 cases and evaluation for predictors of outcome. Clin Orthop Relat Res 2001; 391: 224-233.
  • 6 Puri A, Shah M, Agarwal MG. et al. Chondrosarcoma of bone: does the size of the tumor, the presence of a pathologic fracture, or prior intervention have an impact on local control and survival?. J Cancer Res Ther 2009; 5 (01) 14-19.
  • 7 Morioka H, Weissbach L, Vogel T. et al. Antiangiogenesis treatment combined with chemotherapy produces chondrosarcoma necrosis. Clin Cancer Res 2003; 9 (03) 1211-1217.
  • 8 Klenke FM, Abdollahi A, Bertl E. et al. Tyrosine kinase inhibitor SU6668 represses chondrosarcoma growth via antiangiogenesis in vivo. BMC Cancer 2007; 7: 49.
  • 9 Lai T, Hsu S, Li T. et al. Alendronate inhibits cell invasion and MMP-2 secretion in human chondrosarcoma cell line. Acta Pharmacol Sin 2007; 28 (08) 1231-1235.
  • 10 Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther 2003; 2 (Suppl. 04) (Suppl. 01) S134-S139.
  • 11 Klenke FM, Merkle T, Fellenberg J. et al. A novel model for the investigation of orthotopically growing primary and secondary bone tumours using intravital microscopy. Lab Anim 2005; 39 (04) 377-383.
  • 12 Clark JCM, Dass CR, Choong PFM. Development of chondrosarcoma animal models for assessment of adjuvant therapy. ANZ J Surg 2009; 79 (05) 327-336.
  • 13 Clark JC, Akiyama T, Dass CR, Choong PF. New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis. Cancer Cell Int 2010; 10: 20.
  • 14 Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma 1980. Clin Orthop Relat Res 2003; 415: 4-18.
  • 15 Sheth DS, Yasko AW, Johnson ME. et al. Chondrosarcoma of the pelvis. Prognostic factors for 67 patients treated with definitive surgery. Cancer 1996; 78 (04) 745-750.
  • 16 Jawad MU, Haleem AA, Scully SP. Malignant sarcoma of the pelvic bones. Cancer 2011; 117 (07) 1529-1541.
  • 17 Kafchitsas K, Habermann B, Tonak M, Kurth AA. Knochentumoren der Wirbelsäule. Osteologie 2010; 19: 332-339.
  • 18 Susa M, Morii T, Yabe H. et al. Alendronate inhibits growth of high-grade chondrosarcoma cells. Anticancer Res 2009; 29 (06) 1879-1888.
  • 19 Noël G, Habrand JL, Mammar H. et al. Combination of photon and proton radiation therapy for chordomas and chondrosarcomas of the skull base: the Centre de Protonthérapie d'Orsay experience. Int J Radiat Oncol Biol Phys 2001; 51 (02) 392-398.
  • 20 Kelland LR. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004; 40 (06) 827-836.
  • 21 Maibenco HC, Krehbiel RH, Nelson D. Transplantable osteogenic tumor in the rat. Cancer Res 1967; 27 (02) 362-366.
  • 22 Breitkreutz D, Diaz Leon L, de Paglia L. et al. Histological and biochemical studies of a transplantable rat chondrosarcoma. Cancer Res 1979; 39 (12) 5093-5100.
  • 23 Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to „Nude” mice. Acta Pathol Microbiol Scand 1969; 77 (04) 758-760.
  • 24 Luu HH, Kang Q, Park JK. et al. An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 2005; 22 (04) 319-329.
  • 25 Giovanella BC, Yim SO, Stehlin JS, Williams jr LJ. Development of invasive tumors in the „nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 1972; 48 (05) 1531-1533.
  • 26 Troiani T, Schettino C, Martinelli E. et al. The use of xenograft models for the selection of cancer treatments with the EGFR as an example. Crit Rev Oncol Hematol 2008; 65 (03) 200-211.
  • 27 Entz-Werle N, Choquet P, Neuville A. et al. Targeted apc; twist double-mutant mice: a new model of spontaneous osteosarcoma that mimics the human disease. Transl Oncol 2010; 3 (06) 344-353.
  • 28 Johnson JI, Decker S, Zaharevitz D. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84 (10) 1424-1431.
  • 29 Jin K, Teng L, Shen Y. et al. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol 2010; 12 (07) 473-480.
  • 30 Tripathi M, Billet S, Bhowmick NA. Understanding the role of stromal fibroblasts in cancer progression. Cell Adh Migr 2012; 6 (03) 231-235.
  • 31 Cespedes MV, Casanova I, Parreno M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol 2006; 8 (05) 318-329.
  • 32 Hefti F. Kinderorthopädie in der Praxis. Berlin: Springer; 1998
  • 33 Jones KB. Osteosarcomagenesis: modeling cancer initiation in the mouse. Sarcoma 2011; 2011: 694136.
  • 34 Kurth AA, Kim SZ, Sedlmeyer I. et al. Treatment with ibandronate preserves bone in experimental tumour-induced bone loss. J Bone Joint Surg Br 2000; 81: 126-130.