Nervenheilkunde 2017; 36(09): 739-744
DOI: 10.1055/s-0038-1627520
Universitätsklinikum Ulm
Schattauer GmbH

Rolle des Endocannabinoidsystems für die Therapie von Angsterkrankungen

Role of the endocannabinoid system in therapy of anxiety disorders
J. Spohrs
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
V. Rau
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
,
B. Abler
1   Klinik für Psychiatrie und Psychotherapie III, Universitätsklinikum Ulm
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingegangen am: 01. Juli 2017

angenommen am: 20. Juli 2017

Publikationsdatum:
20. Januar 2018 (online)

Zusammenfassung

Das Interesse an zentralen Korrelaten von Angsterkrankungen und expositionsbasierter Therapie hat in den vergangenen Jahren Hypothesen auf einer breiten Basis von Tierexperimenten generiert. Hier wurden, vor allem in Konditionierungsexperimenten, die genetischen, biologischen und neurobiologischen Komponenten der Angstkonditionierung untersucht. Die Ergebnisse dieser Untersuchungen weisen unter anderem auf eine deutliche Modulation der Effekte durch das Endocannabinoidsystem hin, welche an gewissen Punkten beeinflussbar zu sein scheint. Auch wenn das Endocannabinoidsystem beim Menschen pharmakologischen Interventionen gut zugänglich ist, gelang es bislang nur sehr eingeschränkt, die breite Basis an Ergebnissen von Tierstudien auf die klinische Anwendung am Menschen zu übertragen. Es fehlen vor allem Erkenntnisse, ob und inwiefern das hochvolatile Endocannabinoidsystem beim Menschen tatsächlich vergleichbar zum Nagetier reagiert.

Summary

In the past years, the interest in central correlates of anxiety disorders and expositionbased therapies has generated hypotheses on the foundation of animal studies. Those analysed, mainly in classical conditioning paradigms, the genetic, biological and neurological components of fear-conditioning. The results of these studies consistently indicate a robust modulation of the effects by the endocannabinoid system. Even though the endocannabinoid system in humans is well accessible for pharmaceutical interventions, the transfer of the broad basis of results from animal studies to the clinical application in humans has been limited. There is a lack of insights of how the highly volatile endocannabinoid system reacts compared to the rodent.

 
  • Literatur

  • 1 Kessler RC. et al. Lifetime prevalence and age-ofonset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62 (06) 593-602.
  • 2 Bradley R. et al. A multidimensional meta-analysis of psychotherapy for PTSD. Am J Psychiatry 2005; 162 (02) 214-27.
  • 3 Otte C. Cognitive behavioral therapy in anxiety disorders: current state of the evidence. Dialogues Clin Neurosci 2011; 13 (04) 413-21.
  • 4 Bandelow B. et al. The German guidelines for the treatment of anxiety disorders. Eur Arch Psychiatry Clin Neurosci 2015; 265 (05) 363-73.
  • 5 Vervliet B. et al. Fear extinction and relapse: state of the art. Annu Rev Clin Psychol 2013; 09: 215-48.
  • 6 Hofmann SG. et al. Neuroenhancement of exposure therapy in anxiety disorders. AIMS Neurosci 2015; 02 (03) 123-138.
  • 7 Dincheva I. et al. FAAH genetic variation enhances fronto-amygdala function in mouse and human. Nat Commun 2015; 06: 63-95.
  • 8 Hall W, Degenhardt L. The adverse health effects of chronic cannabis use. Drug Testing and Analysis 2014; 06: 39-45.
  • 9 Patel S. et al. The endocannabinoid system as a target for novel anxiolytic drugs. Neuroscience and Biobehavioral Reviews 2017; 76: 56-66.
  • 10 Pertwee RG. The pharmacology of cannabinoid receptors and their ligands: an overview. International Journal of Obesity 2006; 30: 13-18.
  • 11 Glass M. et al. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. 1998; 02: 299-318.
  • 12 Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 2008; 33: 56-72.
  • 13 Rabinak CA. et al. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans. Neurobiology of Learning and Memory 2014; 113: 125-134.
  • 14 Ratano P. et al. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala. Neuropsychopharmacology 2014; 39: 2529-2537.
  • 15 Lin QS. et al. Hippocampal endocannabinoids play an important role in induction of long-term potentiation and regulation of contextual fear memory formation. Brain Research Bulletin 2011; 86: 139-145.
  • 16 Atsak P. et al. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory. Proceedings of the National Academy of Sciences 2012; 109: 3504-3509.
  • 17 Moore NLT. et al. Adolescent traumatic stress experience results in less robust conditioned fear and post-extinction fear cue responses in adult rats. Pharmacology Biochemistry and Behavior 2014; 120: 17-24.
  • 18 Papini S. et al. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: a critical review of preclinical research. Biol Psychol 2015; 104: 8-18.
  • 19 Fullana MA. et al. Neural signatures of human fear conditioning: an updated and extended metaanalysis of fMRI studies. Mol Psychiatry 2015; 1-9.
  • 20 Papini S. et al. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: A critical review of preclinical research, in Biological Psychology. 2015; 104: 8-18.
  • 21 Viveros M. et al. Endocannabinoid system and stress and anxiety responses. Pharmacology Biochemistry and Behavior 2005; 81: 331-342.
  • 22 Gunduz-Cinar O. et al. Convergent translational evidence of a role for anandamide in amygdalamediated fear extinction, threat processing and stress-reactivity. Molecular Psychiatry 2013; 34 (11) 637-644.
  • 23 Marsicano G. et al. The endogenous cannabinoid system controls extinction of aversive memories. 2002; 418: 530-534.
  • 24 Aerni A. et al. Low-dose cortisol for symptoms of posttraumatic stress disorder. Am J Psychiatry 2004; 161: 1488-1490.
  • 25 Schelling G. et al. Can posttraumatic stress disorder be prevented with glucocorticoids?. in Annals of the New York Academy of Sciences 2004; 1032: 158-166.
  • 26 Cannich A. CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learning & Memory 2004; 11: 625-632.
  • 27 Dubreucq S. et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. Neuropsychopharmacology 2012; 37: 1885-1900.
  • 28 Bowers ME, Ressler KJ. An overview of translationally informed treatments for posttraumatic stress disorder: Animal models of pavlovian fear conditioning to human clinical trials. Biol Psychiatry 2015; 78 (05) 15-27.
  • 29 Plendl W, Wotjak CT. Dissociation of within- and between-session extinction of conditioned fear. Journal of Neuroscience 2010; 30 (14) 4990-4998.
  • 30 Pamplona F. et al. The cannabinoid receptor agonist WIN 55,212–2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology 2006; 188: 641-649.
  • 31 Pamplona FA. et al. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats. Neurobiology of Learning and Memory 2008; 90: 290-293.
  • 32 Englund A. et al. Can we make cannabis safer?. The Lancet Psychiatry. 2017 im Druck
  • 33 Harnett NG. et al. Neural mechanisms of human temporal fear conditioning. Neurobiology of Learning and Memory 2016; 136: 97-104.
  • 34 Wood KH. et al. Neural mechanisms underlying the conditioned diminution of the unconditioned fear response. NeuroImage 2012; 60 (01) 787-799.
  • 35 Mechoulam R, Parker LA. The endocannabinoid system and the brain. Annual Review of Psychology 2013; 64: 21-47.
  • 36 Rabinak CA. et al. Cannabinoid facilitation of fear extinction memory recall in humans. Neuropharmacology 2013; 64: 396-402.
  • 37 Heitland I. et al. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1. Transl Psychiatry 2012; 02: 1-9.
  • 38 Gunduz-Cinar O. et al. Amygdala FAAH and anandamide: Mediating protection and recovery from stress, in Trends in Pharmacological Sciences. 2013; 34 (11) 637-644.
  • 39 Neumeister A. et al. Elevated brain cannabinoid CB1 receptor availability in post-traumatic stress disorder: a positron emission tomography study. Molecular Psychiatry 2013; 18: 1034-1040.
  • 40 Riebe CJ, Wotjak CT. Endocannabinoids and stress. Stress 2011; 14 (04) 384-397.
  • 41 Morena M. et al. Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 2016; 41: 80-102.
  • 42 Christensen R. et al. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 2007; 370 (9600): 1706-13.
  • 43 Fraser GA. The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neuroscience and Therapeutics 2009; 15: 84-88.
  • 44 Klumpers F. et al. Testing the effects of Delta9-THC and D-cycloserine on extinction of conditioned fear in humans. J Psychopharmacol 2012; 26 (04) 471-8.
  • 45 Rabinak CA. et al. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans. Neurobiol Learn Mem 2014; 113: 125-34.
  • 46 Vervliet B. et al. Fear extinction and relapse: State of the art. Annual Review of Clinical Psychology 2013; 09: 215-248.
  • 47 Hill MN. et al. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Molecular Psychiatry 2013; 18: 1125-1135.
  • 48 Haroutounian S. et al. The effect of medicinal cannabis on pain and quality-of-life outcomes in chronic pain. The Clinical Journal of Pain 2016; 32: 1036-1043.
  • 49 Shohet A. et al. Effect of medical cannabis on thermal quantitative measurements of pain in patients with Parkinson’s disease. European Journal of Pain 2017; 21: 486-493.
  • 50 Cooper RE. et al. Evaluation of an extensively hydrolysed casein formula in children with allergy to cow’s milk proteins. European Neuropsychopharmacology 2017; 27 (08) 795-808.