Nervenheilkunde 2011; 30(05): 345-349
DOI: 10.1055/s-0038-1627821
Forum Neuropharmakotherapie
Schattauer GmbH

Fingolimod

Entwicklung von Signaltransduktionshemmern für die Therapie der Multiplen SkleroseFingolimodDevelopment of signal transduction inhibitors for the therapy of multiple sclerosis
M. Ocker
1   Institut für Chirurgische Forschung, Philipps-Universität Marburg
,
B. Tackenberg
2   Klinik für Neurologie, MS-Zentrum und Klinisches Prüfzentrum MS, Philipps-Universität Marburg und Universitätsklinikum Marburg
,
H. Strik
3   AG Neuroonkologie, Klinik für Neurologie, Philipps-Universität Marburg
› Author Affiliations
Further Information

Publication History

Eingegangen am: 08 July 2010

angenommen am: 09 July 2010

Publication Date:
23 January 2018 (online)

Zusammenfassung

Prozesse der Signaltransduktion (Kommunikation von extra- nach intrazellulär) sind an einer Vielzahl physiologischer und pathologischer Prozesse beteiligt. Durch molekulare Analysen konnten in den vergangenen Jahren verschiedene Moleküle identifiziert werden, die zu neuen Therapiestrategien bei soliden und hämatologischen Tumoren geführt haben. Dieses Verständnis von Signaltransduktionskaskaden führte in vielen Bereichen zur Entwicklung neuer Wirksubstanzen, z. B. Fingolimod (FTY720), das bei der Therapie der Multiplen Sklerose erfolgreich in Phase-III-Studien getestet wurde. Fingolimod ist ein Sphingosin-1-Phosphatrezeptormodulator und ein funktioneller Antagonist von Sphingosin-1-Phosphat (S1P), welches über verschiedene G-Protein-gekoppelte Zellmembranrezeptoren an immunologischen, vaskulären und zellbiologischen Prozessen beteiligt ist. Im ZNS reguliert S1P unter anderem die Auswanderung von Lymphozyten aus dem Gefäßsystem und ist durch eine Förderung des Zellwachstums von Astrozyten an der Pathogenese neurodegenerativer Erkrankungen mit Astrogliose beteiligt. In diesem Übersichtsartikel sollen die molekularen und biochemischen Prozesse dargestellt und der Wirkmechanismus von Fingolimod in der Therapie der Multiplen Sklerose diskutiert werden.

Summary

Signal transduction processes (communication from extra- to intracellular compartments) are involved in a plethora of physiologic and pathologic processes. Molecular analyses identified a variety of molecules that have currently led to novel therapy strategies in solid and hematologic malignancies. This increased understanding of signal transduction cascades has now been applied successfully with Fingolimod (FTY720) in two phase III trials of multiple sclerosis. Fingolimod is a sphingosine-1-phosphate receptor-modulator and a functional antagonist of sphingosine-1-phosphate (S1P), which binds to different G-protein coupled transmembrane receptors and modulates immunologic, vascular and cell biologic processes. In the CNS, S1P also regulates the egress of lymphocytes from blood vessels and promotes proliferation of astrocytes, which is associated with the pathogenesis of neurodegenerative diseases with astrogliosis. In this article, the basic underlying molecular and biochemical processes of Fingolimod will be reviewed and the therapeutic effect in multiple sclerosis will be discussed.

 
  • Literatur

  • 1 Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 2007; 374 (5–6): 413-28.
  • 2 Allende ML, Dreier JL, Mandala S, Proia RL. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 2004; 279 (15) 15396-401.
  • 3 Allende ML, Yamashita T, Proia RL. G-proteincoupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 2003; 102 (10) 3665-7.
  • 4 Alvarez SE, Milstien S, Spiegel S. Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007; 18 (08) 300-7.
  • 5 Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther 2007; 115 (01) 84-105.
  • 6 Brinkmann V. FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 2009; 158 (05) 1173-82.
  • 7 Chae SS, Proia RL, Hla T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat 2004; 73 (1–2): 141-50.
  • 8 Chiba K, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T, Ohtsuki M. et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 1998; 160 (10) 5037-44.
  • 9 Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 402-15.
  • 10 Comi G, O’Connor P, Montalban X, Antel J, Radue EW, Karlsson G. et al. Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult Scler 2010; 16 (02) 197-207.
  • 11 Compston A, Coles A. Multiple sclerosis. Lancet 2002; 359 (9313): 1221-31.
  • 12 Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D. et al. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 2008; 117 (01) 77-93.
  • 13 Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 2006; 354 (09) 942-55.
  • 14 Fugger L, Friese MA, Bell JI. From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 2009; 09 (06) 408-17.
  • 15 Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140 (06) 918-34.
  • 16 Haghikia A, Gold R. The impact of fingolimod (FTY720) in neuroimmunologic diseases: mechanisms beyond immunomodulation. Am J Pathol 2004; 176 (06) 2599-601.
  • 17 Herr DR, Chun J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets 2007; 08 (01) 155-67.
  • 18 Hla T. Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol 2004; 15 (05) 513-20.
  • 19 Holmoy T, Harbo H, Vartdal F, Spurkland A. Genetic and molecular approaches to the immunopathogenesis of multiple sclerosis: an update. Curr Mol Med 2009; 09 (05) 591-611.
  • 20 Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ. et al. FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest 2003; 111 (05) 627-37.
  • 21 Jaillard C, Harrison S, Stankoff B, Aigrot MS, Calver AR, Duddy G. et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 2005; 25 (06) 1459-69.
  • 22 Kantarci O, Wingerchuk D. Epidemiology and natural history of multiple sclerosis: new insights. Curr Opin Neurol 2006; 19 (03) 248-54.
  • 23 Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 2010; 362 (05) 387-401.
  • 24 Kihara A, Igarashi Y. Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. Biochim Biophys Acta 2008; 1781 (09) 496-502.
  • 25 Kluk MJ, Hla T. Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-proteincoupled receptors. Biochim Biophys Acta 2002; 1582 (1–3): 72-80.
  • 26 Kuntz NL, Chabas D, Weinstock-Guttman B, Chitnis T, Yeh EA, Krupp L. et al. Treatment of multiple sclerosis in children and adolescents. Expert Opin Pharmacother 2010; 11 (04) 505-20.
  • 27 Lassmann H, Bruck W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 2001; 07 (03) 115-21.
  • 28 Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 2002; 296 (5566): 346-9.
  • 29 Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004; 427 (6972): 355-60.
  • 30 McVerry BJ, Garcia JG. In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal 2005; 17 (02) 131-9.
  • 31 Mehling M, Brinkmann V, Antel J, Bar-Or A, Goebels N, Vedrine C. et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 2008; 71 (16) 1261-7.
  • 32 Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 2007; 1768 (04) 923-40.
  • 33 Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE. et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol 2010; 176 (06) 2682-94.
  • 34 Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL. Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 2005; 25 (24) 11113-21.
  • 35 Nixon GF. Sphingolipids in inflammation: pathological implications and potential therapeutic targets. Br J Pharmacol 2009; 158 (04) 982-93.
  • 36 Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007; 316 (5822): 295-8.
  • 37 Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 2004; 04 (05) 397-407.
  • 38 van Meer G, Lisman Q. Sphingolipid transport: rafts and translocators. J Biol Chem 2002; 277 (29) 25855-8.
  • 39 Zemann B, Kinzel B, Muller M, Reuschel R, Mechtcheriakova D, Urtz N. et al. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 2006; 107 (04) 1454-8.
  • 40 Zuvich RL, McCauley JL, Pericak-Vance MA, Haines JL. Genetics and pathogenesis of multiple sclerosis. Semin Immunol 2009; 21 (06) 328-33.