Nervenheilkunde 2010; 29(05): 267-272
DOI: 10.1055/s-0038-1628764
125. Wanderversammlung
Schattauer GmbH

Neue therapeutische Konzepte bei der Multiplen Sklerose

Ein AusblickNovel therapeutic strategies for multiple sclerosisAn overview
O. Aktas
1   Neurologische Klinik, Universitätsklinikum Düsseldorf
,
H.-P. Hartung
1   Neurologische Klinik, Universitätsklinikum Düsseldorf
› Author Affiliations
Further Information

Publication History

Eingegangen am: 18 January 2010

angenommen am: 22 January 2010

Publication Date:
24 January 2018 (online)

Zusammenfassung

Die Multiple Sklerose (MS) ist die in unseren Breitengraden häufigste chronisch entzündliche Erkrankung des zentralen Nervensystems (ZNS), die bereits im jungen Erwachsenenalter zu deutlichen neurologischen Behinderungen führen kann. Obwohl eine ursächlich kurative Behandlung der MS nicht möglich ist, konnten in den letzten Jahren aus der grundlagenorientierten MS-Forschung neue therapeutische Konzepte entwickelt werden. Neuesten Erkenntnissen nach sind bereits in Anfangsstadien der MS ausgeprägte entzündlich-neurodegenerative Veränderungen vorhanden. Das Ausmaß der neuronalen Schädigung wird als ein wesentlicher Faktor für die tatsächlichen neurologischen Defizite der Patienten angesehen. Gleichzeitig legen klinische und experimentelle Befunde nahe, dass bestimmte Unterformen der MS immunologisch abgegrenzt werden können, so z. B. die Neuromyelitis optica (Devic-Syndrom). Der folgende Ausblick umreißt die wichtigsten Erkenntnisse zu diesen Bereichen und stellt neue Substanzen einschließlich oraler Therapieverfahren vor, die sich teilweise in fortgeschrittenen klinischen Studien bewährt haben und bald praktische Relevanz in der MS-Therapie gewinnen könnten.

Summary

Multiple sclerosis (MS) is one of the most important causes for sustained neurological deficits in young adults and still an incurable disorder. Thus, current research in MS aims at a better understanding of disease pathology in order to identify new therapeutic targets. According to recent findings, the inflammatory neurodegenerative process may lead to sustained neurological damage from the earliest phases of disease on and are responsible for fixed neurological deficits of patients. Moreover, immunological and histopathological data indicate that certain subsets of MS could be regarded as own disease entities, as this may be the case for neuromyelitis optica (Devic’s syndrome). Here we describe the current model of disease pathology and discuss new therapeutic strategies including oral remedies which have shown efficacy in advanced clinical studies and might open up a new avenue of MS therapy.

 
  • Literatur

  • 1 Aktas O, Kieseier B, Hartung HP. Neuroprotection, regeneration and immunomodulation: broadening the therapeutic repertoire in multiple sclerosis. Trends Neurosci. 2010 Jan 4. E-Pub ahead of print.
  • 2 Aktas O. et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 2005; 46 (03) 421-32.
  • 3 Arnold DL, De Stefano N, Matthews PM, Trapp BD. N-acetylaspartate: usefulness as an indicator of viable neuronal tissue. Ann Neurol 2001; 50 (06) 823-5.
  • 4 Bartholomaus I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462 (7269): 94-8.
  • 5 Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis:correlation with demyelination and inflammation. Brain 2000; 123: 1174-83.
  • 6 Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 2000; 48 (06) 893-901.
  • 7 Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002; 346 (03) 158-64.
  • 8 Brinkmann V. FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 2009; 158 (05) 1173-82.
  • 9 Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996; 272 (5258): 60-6.
  • 10 Charcot M. Histologie de la sclérose en plaques. Gaz Hop 1868; 141: 554-5.
  • 11 Coles AJ. et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 2008; 359 (17) 1786-801.
  • 12 Coles AJ. et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 1999; 46 (03) 296-304.
  • 13 Comi G. et al. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 371 (9630): 2085-92.
  • 14 Dawson J. The histology of disseminated sclerosis. Trans Royal Soc Edin 1916; 50: 517-740.
  • 15 Derfuss T. et al. Contactin-2/TAG-1-directed autoimmunity is identified in multiple sclerosis patients and mediates gray matter pathology in animals. Proc Natl Acad Sci USA 2009; 106 (8302): 8307.
  • 16 Doinikov B. Über Deund Regenerationserscheinungen an Achsenzylindern bei der multiplen Sklerose. Z ges Neurol Psych 1915; 27: 151-78.
  • 17 Dutta R. et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006; 59: 478-89.
  • 18 Eriksson M, Ben Menachem E, Andersen O. Epileptic seizures, cranial neuralgias and paroxysmal symptoms in remitting and progressive multiple sclerosis. Mult Scler 2002; 08 (06) 495-9.
  • 19 Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120: 393-9.
  • 20 Flugel A. et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 2009; 14 (05) 547-60.
  • 21 Friese MA. et al. Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nat Med 2008; 14 (11) 1227-35.
  • 22 Fujita T. et al. Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J Antibiot (Tokyo) 1994; 47 (02) 208-15.
  • 23 Giovannoni G. et al. A Placebo-controlled trial of oral Cladribine for relapsing multiple sclerosis. N Engl J Med. 2010 Jan 20. Epub ahead of print.
  • 24 Greter M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 2005; 11 (03) 328-34.
  • 25 Hartung HP, Aktas O. Bleak prospects for primary progressive multiple sclerosis therapy: downs and downs, but a glimmer of hope. Ann Neurol 2009; 66 (04) 429-32.
  • 26 Hartung HP, Aktas O, Kieseier B, Comi G. Development of oral cladribine for the treatment of multiple sclerosis. J Neurol. 2009 Nov 18 E-Pub ahead of print.
  • 27 Hartung H-P, Kieseier BC, Aktas O. Cladribin: Entwicklung einer oralen Formulierung zur Behandlung der Multiplen Sklerose. Nervenarzt 2010; 81: 194-202.
  • 28 Hauser SL. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008; 358 (07) 676-88.
  • 29 Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 03 (04) 291-301.
  • 30 Hemmer B, Hartung HP. Toward the development of rational therapies in multiple sclerosis: what is on the horizon?. Ann Neurol 2007; 62 (04) 314-26.
  • 31 Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: From pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci USA 2004; 101 Suppl (Suppl. 02) 14599-606.
  • 32 Inglese M, Ge Y, Filippi M, Falini A, Grossman RI, Gonen O. Indirect evidence for early widespread gray matter involvement in relapsing-remitting multiple sclerosis. Neuroimage 2004; 21 (04) 1825-9.
  • 33 Iragui-Madoz VJ. Electrophysiology of multiple sclerosis. In: Daly DD, Pedley TA. editors. Current practice of clinical electroencephalography. 2nd ed.. New York: Raven; 1990
  • 34 Kappos L. et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 2006; 355 (11) 1124-40.
  • 35 Kappos L. et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 372 (9648): 1463-72.
  • 36 Kivisakk P, Trebst C, Eckstein DJ, Kerza-Kwiatecki AP, Ransohoff RM. Chemokine-based therapies for MS: how do we get there from here?. Trends Immunol 2001; 22: 591-3.
  • 37 Kremer D. et al. p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation. Proc Natl Acad Sci USA 2009; 106: 9087-92.
  • 38 Lassmann H. Multiple sclerosis pathology: evolution of pathogenetic concepts. Brain Pathol 2005; 15 (03) 217-22.
  • 39 Leussink VI, Lehmann HC, Meyer HGzu, Hartung HP, Stuve O, Kieseier BC. Rituximab induces clinical stabilization in a patient with fulminant multiple sclerosis not responding to natalizumab. Evidence for disease heterogeneity. J Neurol 2009; 255 (09) 1436-8.
  • 40 Linker RA. et al. CNTF is a major protective factor in demyelinating CNS disease: a neurotrophic cytokine as modulator in neuroinflammation. Nat Med 2002; 08 (06) 620-4.
  • 41 Lopez-Diego RS, Weiner HL. Novel therapeutic strategies for multiple sclerosis – a multifaceted adversary. Nat Rev Drug Discov 2008; 07 (11) 909-25.
  • 42 Lucchinetti CF, Brück W, Moses R, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathol 1996; 06: 259-74.
  • 43 Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain 2008; 131 (Pt 7): 1722-35.
  • 44 Martin R, McFarland HF, McFarlin DE. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1992; 90: 153-87.
  • 45 Martinez-Rodriguez JE, Cadavid D, Wolansky LJ, Pliner L, Cook SD. Cladribine in aggressive forms of multiple sclerosis. Eur J Neurol 2007; 14 (06) 686-9.
  • 46 Mathey EK. et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 2007; 204 (10) 2363-72.
  • 47 Merrill JE. et al. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti at model of experimental autoimmune encephalomyelitis. J Neurol 2009; 256: 89-103.
  • 48 Montalban X, Wynn DR, Kaufmann M, Wang M, Fong A. Preliminary CHOICE results: a phase 2, randomised, placebocontrolled multicentre study of subcutaneous daclizumab in patients with active, relapsing forms of multiple sclerosis on interferon beta. 23rd Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Prague. Mult Scler 2007; 13: S18.
  • 49 Kappos L. et al. A PlacebocControlled trial of oral Fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010 Jan 20; Epub ahead of print.
  • 50 Paul F, Jarius S, Glumm R, Wildemann B, Zipp F, Aktas O. [Recent findi. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A Placebo-Controlled Trial of Oral Fingolimod in Relapsing Multiple Sclerosis. N Engl J Med 2010 Jan 20ngs in pathogenesis, diagnostics and therapy of neuromyelitis optica]. Dtsch Med Wochenschr 2008; 133 (21) 1125-9.
  • 51 Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001; 50: 389-400.
  • 52 Polman CH. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005; 58 (06) 840-6.
  • 53 Prozorovski T. et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008; 10 (04) 385-94.
  • 54 Racke MK. The role of B cells in multiple sclerosis: rationale for B-cell-targeted therapies. Curr Opin Neurol 2008; 21 Suppl (Suppl. 01) S9-S18.
  • 55 Schulz D, Kopp B, Kunkel A, Faiss JH. Cognition in the early stage of multiple sclerosis. J Neurol (online). 2006 Apr 11.
  • 56 Stuve O, Leussink VI, Frohlich R, Hemmer B, Hartung HP, Menge T. et al. Long-term B-lymphocyte depletion with rituximab in patients with relapsing-remitting multiple sclerosis. Arch Neurol 2009; 66 (02) 259-61.
  • 57 Trapp BD, Peterson J, Ransohoff RM, Rudick RA, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278-85.
  • 58 Wekerle H, Linington C, Lassmann H, Meyermann R. Cellular immune reactivity within the CNS. Trends Neurosci 1986; 09: 271-7.
  • 59 Zipp F, Aktas O. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 2006; 29 (09) 518-27.
  • 60 Cohen JA. et al. Oral Fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010 Jan 20; Epub ahead of print.