Nuklearmedizin 1997; 36(08): 259-264
DOI: 10.1055/s-0038-1629844
Originalarbeiten — Original Articles
Schattauer GmbH

Effects of Rest and Exercise on Cardiac Blood Volume Determinations[*]

Der Einfluß von Ruhe und Belastung auf die Bestimmung des kardialen Blutvolumens
N. Topuzović
1   From the Department of Nuclear Medicine, Radiation Protection and Pathophysiology, Osijek Clinical Hospital, Osijek, Croatia
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 19. November 1996

in revised form: 08. April 1997

Publikationsdatum:
03. Februar 2018 (online)

Summary

Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.

Zusammenfassung

Ziel: Erfassung von Veränderungen der Blutradioaktivität in Ruhe, unter Belastung und in der Erholung sowie Abschätzung des Einflusses auf die Bestimmung des linksventrikulären Blutvolumens bei Berechnung mittels Blutprobenmessungen. Methode: Die Radionuklidventrikulo-graphie wurde bei 44 Patienten in Belastung und Ruhe durchgeführt. Bei 13 Patienten wurde 99mTc-Humanserumalbumin (Gruppe 1) benützt, bei 17 Patienten die Erythrozytenmarkierung in vivo (Gruppe 2) und bei 14 Patienten eine modifizierte ln-vivo-/in-vitro-Markierung (Gruppe 3). Die linksventrikulären Volumina wurden aus dem Vergleich mit Radioaktivitätskonzentrationen in Blutproben errechnet, entnommen während Ruhe, maximaler Belastung und nach Erholung. Ergebnisse: Die Blutradioaktivitätskonzentration nahm, im Vergleich zur Ruhe, in Gruppe 1 (Belastung) um 12,6 ± 5,4% (p <0,05) ab, erhöhte sich jedoch um 25,1 ± 6,4% (p <0,001) bzw. um 12,8 ± 4,5% (p <0,05) über den Ruhewert in Gruppe 2 und 3. Dies führte zu Veränderungen der linksventrikulären Blutvolumina dann, wenn ausschließlich die Radioaktivitätskonzentration in Ruhe als Referenz verwendet wurde: sie wurden um 22,1 ± 0,6% in Gruppe 1 unterschätzt, in den Gruppen 2 und 3 mit 32,1 ± 10,3% bzw. mit 10,7 ± 6,4% überschätzt. Zwischen Belastung und Erholung gab es keine signifikanten Unterschiede. Schlußfolgerung: Die Verwendung nur der Ruhe-Radioaktivitätskonzentration als Volumenaliquot führt zu einer Verfälschung der berechneten kardialen Blutvolumina, weil sich die Konzentration im Blut bei Belastung und in der Erholung signifikant verändert.

* Presented in part at the Second International Conference in Nuclear Cardiology, Cannes, France, 23-26 April, 1995.


 
  • References

  • 1 Adams KF, Vincent LM, McAllister SM. et al. The influence of age and gender on left ventricular response to supine exercise in asymptomatic normal subjects. Am Heart J 1987; 113: 732-42.
  • 2 Atkins HL, Klopper JF, Ansari AN. et al. A comparison of Tc-99m-labeled human serum albumin and in vitro labeled red blood cells for blood pool studies. Clin Nucl Med 1980; 5: 166-9.
  • 3 Caputo GR, Graham MM, Brust KD. et al. Measurement of left ventricular volume using single-photon emission computed tomography. Am J Cardiol 1985; 56: 781-6.
  • 4 Dehmer GJ, Lewis SE, Hillis LD. et al. Exercise-induced alterations in left ventricular volumes and the pressure-volume relationship: A sensitive indicator of left ventricular dysfunction in patients with coronary artery disease. Circulation 1981; 63: 1008-18.
  • 5 Gates GF, Ames AW. Splenic “disappearance” during gated exercise nuclear angiocardiography. Clin Nucl Med 1985; 11: 683-7.
  • 6 Groom AC, Schmidt EE, MacDonald IC. Microcirculatory pathways and blood flow in spleen: new insights from washout kinetics, corrosion casts, and quantitative intravital videomicroscopy. Scann Microscopy 1991; 5: 159-73.
  • 7 Hambye AS, Vandermeiren R, Vervaet A, Vandevivere J. Failure to label red blood cells adequately in daily practice using an in vivo method: methodological and clinical considerations. Eur J Nucl Med 1995; 22: 61-7.
  • 8 Hanley PC, Zinmeister AR, Clements IP. et al. Gender-related differences in cardiac response to supine exercise assessed by radionuclide angiography. J Am Coll Cardiol 1989; 13: 624-9.
  • 9 Kan G, Visser CA, Lie KI, Durrer D. Left ventricular volume and ejection fraction by single plane two-dimensional apex echocardiography. Eur Heart J 1981; 2: 339-43.
  • 10 Kelly MJ, Cowie AR, Antonino A. et al. An assessment of factors which influence the effectiveness of the modified in vivo techne-tium-99m-erythrocyte labeling technique in clinical use. J Nucl Med 1992; 33: 2222-5.
  • 11 Kitani K, Taplin GV. Rapid hepatic turnover of radioactive human serum albumin in sensitized dogs. J Nucl Med 1974; 15: 938-40.
  • 12 Klerk de JMH, van Rijk PP, van Dongen AJ. et al. Can technetium-99m bisdiethylphospi-no-ethanebis-t butylisocyanide (Tc-99m-DEPIC) be used for routine radionuclide ventriculography?. Eur J Nucl Med 1991; 18: 317-20.
  • 13 Konstam MA, Tu’meh S, Wynne J. et al. Effects of exercise on erythrocyte count and blood activity concentration after techne-tium-99m in vivo red blood cell labeling. Circulation 1982; 66: 638-42.
  • 14 Lee KL, Pryor DB, Pieper KS. et al. Prognostic value of radionuclide angiography in medically treated patients with coronary artery disease. A comparison with clinical and catheterization variables. Circulation 1990; 82: 1705-17.
  • 15 Lee SY, Schmid-Schonbein GW. Pulsatile pressure and flow in the skeletal muscle microcirculation. J Biomechanic Engin 1990; 112: 437-43.
  • 16 Levy WC, Cerqueira MD, Matsuoka DT. et al. Four radionuclide methods for left ventricular volume determination: Comparison of a manual and an automated technique. J Nucl Med 1992; 33: 763-70.
  • 17 Levy WC, Cerqueira MD, Veith R, Stratton JR. Factors influencing serial measurement of cardiac volumes by count-based methods: Effects of elevated catecholamines, position, and exercise on technetium-99m-blood radioactivity concentration. J Nucl Med 1992; 33: 1324-9.
  • 18 Links JM, Becker LC, Shindledecker JG. et al. Measurement of absolute ventricular volume from gated blood pool studies. Circulation 1982; 65: 82-91.
  • 19 Massardo T, Gal RA, Grenier RP. et al. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 1990; 31: 450-6.
  • 20 Massie BM, Kramer BL, Gertz EW, Henderson SG. Radionuclide measurement of left ventricular volume: Comparison of geometric and counts-based methods. Circulation 1982; 65: 725-30.
  • 21 Müller T. Quality control of commercial Tc-99m-human albumin kits. Eur J Nucl Med 1985; 10: 551-3.
  • 22 Nishimura T, Hamada S, Hayashida K. et al. Cardiac blood-pool scintigraphy using tech-netium-99m DTP-HSA: Comparison with in vivo technetium-99m RBC labeling. J Nucl Med 1989; 30: 1713-7.
  • 23 Nusynowitz ML, Straw JD, Benedetto AR, Dixon RS. Blood clearance rates of technetium-99m albumin preparations: Concise communication. J Nucl Med 1978; 19: 1142-5.
  • 24 Pavel DG, Zimmer AM, Patterson VN. In vivo labeling of red blood cells with Tc-99m: A new approach to blood pool visualization. J Nucl Med 1977; 18: 305-8.
  • 25 Plotnick GD, Becker LC, Fisher ML. Changes in left ventricular function during recovery from upright bicycle exercise in normal persons and patients with coronary artery disease. Am J Cardiol 1986; 58: 247-51.
  • 26 Poliner LR, Dehmer GJ, Lewis SE. et al. Left ventricular performance in normal subjects: A comparison of the responses to exercise in the upright and supine positions. Circulation 1980; 3: 528-34.
  • 27 Reiter SJ, Rumberger JA, Feiring AJ. et al. Precision of measurements of right and left ventricular volume by cine computed tomography. Circulation 1986; 74: 890-900.
  • 28 Rodeheffer RJ, Gerstenblith G, Becker LC. et al. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation 1984; 69: 203-13.
  • 29 Roig E, Magrina J, Garcia A. et al. Prognostic value of exercise radionuclide angiography in low risk acute myocardial infarction survivors. Eur Heart J 1993; 14: 213-8.
  • 30 Sandler MP, Kronenberg MW, Forman MB. et al. Dynamic fluctuations in blood and spleen radioactivity: Splenic contraction and relation to clinical radionuclide volume calculations. J Am Coll Cardiol 1984; 3: 1205-11.
  • 31 Sechtem U, Pflugfelder PW, Gould RG. et al. Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 1987; 163: 697-702.
  • 32 Senay LC, Rogers G, Jooste P. Changes in blood plasma during progressive treadmill and cycle exercise. J Appl Physiol 1980; 49: 59-65.
  • 33 Schmid-Schönbein GW. Microlymphatics and lymph flow. Physiol Rev 1990; 70: 987-1028.
  • 34 Thrall JH, Freitas JE, Swanson D. et al. Clinical comparison of cardiac blood pool visualization with technetium-99m red blood cells labeled in vivo and with technetium-99m human serum albumin. J Nucl Med 1978; 19: 796-803.
  • 35 Vanbilloen HP, Verbeke KA, De Roo MJ, Verbruggen AM. Technetium-99m labeled human serum albumin for ventriculography: a comparative evaluation of six labeling kits. Eur J Nucl Med 1993; 20: 465-72.
  • 36 Vatterott PJ, Gibbons RJ, Hu DCK. et al. Assessment of left ventricular volume changes during exercise radionuclide angiography in coronary artery disease. Am J Cardiol 1988; 61: 912-4.
  • 37 Verbeke K, Hjelstuen O, Debrock E. et al. Comparative evaluation of Tc-99m-Hynic HSA and Tc-99m-MAG3-HSA as possible blood pool agents. Nucl Med Commun 1995; 16: 942-57.
  • 38 Verbeke KA, Vanbilloen HP, De Roo MJ, Verbruggen AM. Technetium-99m mercap-toalbumin as a potential substitute techne-tium-99m labeled red blood cells. Eur J Nucl Med 1993; 20: 473-82.
  • 39 White HD, Norris RM, Brown MA. et al. Left ventricular endsystolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76: 44-51.
  • 40 Wijns W, Melin JA, Decoster PM. et al. Radionuclide absolute left ventricular volumes during upright exercise: validation in normal subjects by simultaneous hemodynamic measurements. Eur J Nucl Med 1985; 10: 111-7.