Semin Respir Crit Care Med 2023; 44(01): 075-090
DOI: 10.1055/s-0042-1759567
Review Article

Severity of Illness Scores and Biomarkers for Prognosis of Patients with Coronavirus Disease 2019

Rodrigo Cavallazzi
1   Division of Pulmonary, Critical Care Medicine, and Sleep Disorders, University of Louisville, Norton Healthcare, Louisville, Kentucky
,
James Bradley
1   Division of Pulmonary, Critical Care Medicine, and Sleep Disorders, University of Louisville, Norton Healthcare, Louisville, Kentucky
,
Thomas Chandler
2   Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky
,
Stephen Furmanek
2   Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky
,
Julio A. Ramirez
2   Norton Infectious Diseases Institute, Norton Healthcare, Louisville, Kentucky
› Author Affiliations

Abstract

The spectrum of disease severity and the insidiousness of clinical presentation make it difficult to recognize patients with coronavirus disease 2019 (COVID-19) at higher risk of worse outcomes or death when they are seen in the early phases of the disease. There are now well-established risk factors for worse outcomes in patients with COVID-19. These should be factored in when assessing the prognosis of these patients. However, a more precise prognostic assessment in an individual patient may warrant the use of predictive tools. In this manuscript, we conduct a literature review on the severity of illness scores and biomarkers for the prognosis of patients with COVID-19. Several COVID-19-specific scores have been developed since the onset of the pandemic. Some of them are promising and can be integrated into the assessment of these patients. We also found that the well-known pneumonia severity index (PSI) and CURB-65 (confusion, uremia, respiratory rate, BP, age ≥ 65 years) are good predictors of mortality in hospitalized patients with COVID-19. While neither the PSI nor the CURB-65 should be used for the triage of outpatient versus inpatient treatment, they can be integrated by a clinician into the assessment of disease severity and can be used in epidemiological studies to determine the severity of illness in patient populations. Biomarkers also provide valuable prognostic information and, importantly, may depict the main physiological derangements in severe disease. We, however, do not advocate the isolated use of severity of illness scores or biomarkers for decision-making in an individual patient. Instead, we suggest the use of these tools on a case-by-case basis with the goal of enhancing clinician judgment.



Publication History

Article published online:
16 January 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323 (13) 1239-1242
  • 2 Bordon J, Akca O, Furmanek S. et al. Acute respiratory distress syndrome and time to weaning off the invasive mechanical ventilator among patients with COVID-19 pneumonia. J Clin Med 2021; 10 (13) 2935
  • 3 Blair PW, Brown DM, Jang M. et al; Ambulatory COVID Study Team. The clinical course of COVID-19 in the outpatient setting: a prospective cohort study. Open Forum Infect Dis 2021; 8 (02) ofab007
  • 4 Centers for Disease Control and Prevention. Underlying medical conditions associated with higher risk for severe COVID-19: information for healthcare professionals. Accessed June, 15, 2022 at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html
  • 5 Bradley J, Sbaih N, Chandler TR, Furmanek S, Ramirez JA, Cavallazzi R. Pneumonia severity index and CURB-65 score are good predictors of mortality in hospitalized patients with SARS-CoV-2 community-acquired pneumonia. Chest 2022; 161 (04) 927-936
  • 6 Zhou ZR, Wang WW, Li Y. et al. In-depth mining of clinical data: the construction of clinical prediction model with R. Ann Transl Med 2019; 7 (23) 796
  • 7 Lee YH, Bang H, Kim DJ. How to establish clinical prediction models. Endocrinol Metab (Seoul) 2016; 31 (01) 38-44
  • 8 Cowley LE, Farewell DM, Maguire S, Kemp AM. Methodological standards for the development and evaluation of clinical prediction rules: a review of the literature. Diagn Progn Res 2019; 3: 16
  • 9 Scarneciu CC, Sangeorzan L, Rus H. et al. Comparison of linear and non-linear regression analysis to determine pulmonary pressure in hyperthyroidism. Pak J Med Sci 2017; 33 (01) 111-120
  • 10 Variyath AM, Brobbey A. Variable selection in multivariate multiple regression. PLoS One 2020; 15 (07) e0236067
  • 11 Diaz-Ramirez LG, Lee SJ, Smith AK, Gan S, Boscardin WJ. A novel method for identifying a parsimonious and accurate predictive model for multiple clinical outcomes. Comput Methods Programs Biomed 2021; 204: 106073
  • 12 Pepe MS, Fan J, Feng Z, Gerds T, Hilden J. The Net Reclassification Index (NRI): a misleading measure of prediction improvement even with independent test data sets. Stat Biosci 2015; 7 (02) 282-295
  • 13 Cook NR. Quantifying the added value of new biomarkers: how and how not. Diagn Progn Res 2018; 2: 14
  • 14 Assel M, Sjoberg DD, Vickers AJ. The Brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagn Progn Res 2017; 1: 19
  • 15 Vickers AJ, Van Calster B, Steyerberg EW. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 2016; 352: i6
  • 16 Davis SE, Greevy Jr. RA, Lasko TA, Walsh CG, Matheny ME. Detection of calibration drift in clinical prediction models to inform model updating. J Biomed Inform 2020; 112: 103611
  • 17 Jenkins DA, Martin GP, Sperrin M. et al. Continual updating and monitoring of clinical prediction models: time for dynamic prediction systems?. Diagn Progn Res 2021; 5 (01) 1
  • 18 Neill AM, Martin IR, Weir R. et al. Community acquired pneumonia: aetiology and usefulness of severity criteria on admission. Thorax 1996; 51 (10) 1010-1016
  • 19 Cavallazzi R, El-Kersh K, Abu-Atherah E. et al. Midregional proadrenomedullin for prognosis in community-acquired pneumonia: a systematic review. Respir Med 2014; 108 (11) 1569-1580
  • 20 Lim WS, van der Eerden MM, Laing R. et al. Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 2003; 58 (05) 377-382
  • 21 Bradley P, Frost F, Tharmaratnam K, Wootton DG. NW Collaborative Organisation for Respiratory Research. Utility of established prognostic scores in COVID-19 hospital admissions: multicentre prospective evaluation of CURB-65, NEWS2 and qSOFA. BMJ Open Respir Res 2020; 7 (01) e000729
  • 22 Guo J, Zhou B, Zhu M. et al. CURB-65 may serve as a useful prognostic marker in COVID-19 patients within Wuhan, China: a retrospective cohort study. Epidemiol Infect 2020; 148: e241-e241
  • 23 Armiñanzas C, Arnaiz de Las Revillas F, Gutiérrez Cuadra M. et al. Usefulness of the COVID-GRAM and CURB-65 scores for predicting severity in patients with COVID-19. Int J Infect Dis 2021; 108: 282-288
  • 24 Elmoheen A, Abdelhafez I, Salem W. et al. External validation and recalibration of the CURB-65 and PSI for predicting 30-Day mortality and critical care intervention in multiethnic patients with COVID-19. Int J Infect Dis 2021; 111: 108-116
  • 25 Fan G, Tu C, Zhou F. et al. Comparison of severity scores for COVID-19 patients with pneumonia: a retrospective study. Eur Respir J 2020; 56 (03) 2002113
  • 26 Anurag A, Preetam M. Validation of PSI/PORT, CURB-65 and SCAP scoring system in COVID-19 pneumonia for prediction of disease severity and 14-day mortality. Clin Respir J 2021; 15 (05) 467-471
  • 27 Satici C, Demirkol MA, Altunok ES. et al. Performance of pneumonia severity index and CURB-65 in predicting 30-day mortality in patients with COVID-19. Int J Infect Dis 2020; 98: 84-89
  • 28 van Dam PMEL, Zelis N, van Kuijk SMJ. et al. Performance of prediction models for short-term outcome in COVID-19 patients in the emergency department: a retrospective study. Ann Med 2021; 53 (01) 402-409
  • 29 Fine MJ, Auble TE, Yealy DM. et al. A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 1997; 336 (04) 243-250
  • 30 Wynants L, Van Calster B, Collins GS. et al. Update to living systematic review on prediction models for diagnosis and prognosis of covid-19. BMJ 2021; 372 (236) n236
  • 31 Lombardi Y, Azoyan L, Szychowiak P. et al; AP-HP/Universities/INSERM COVID-19 Research Collaboration AP-HP COVID CDR Initiative. External validation of prognostic scores for COVID-19: a multicenter cohort study of patients hospitalized in Greater Paris University Hospitals. Intensive Care Med 2021; 47 (12) 1426-1439
  • 32 Knight SR, Ho A, Pius R. et al; ISARIC4C investigators. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 2020; 370: m3339
  • 33 Knight SR, Gupta RK, Ho A. et al; ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC4C) Investigators, ISARIC4C investigators. Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. Thorax 2022; 77 (06) 606-615
  • 34 Jones A, Pitre T, Junek M. et al; COREG Investigators. External validation of the 4C mortality score among COVID-19 patients admitted to hospital in Ontario, Canada: a retrospective study. Sci Rep 2021; 11 (01) 18638
  • 35 Neto FL, Marino LO, Torres A. et al; COVID Registry Team, Medical Students, Residents, Attending physicians. Community-acquired pneumonia severity assessment tools in patients hospitalized with COVID-19: a validation and clinical applicability study. Clin Microbiol Infect 2021; 27 (07) 1037.e1-1037.e8
  • 36 Lassau N, Ammari S, Chouzenoux E. et al. Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients. Nat Commun 2021; 12 (01) 634
  • 37 Jiang M, Li C, Zheng L. et al. A biomarker-based age, biomarkers, clinical history, sex (ABCS)-mortality risk score for patients with coronavirus disease 2019. Ann Transl Med 2021; 9 (03) 230
  • 38 Zelis N, Buijs J, de Leeuw PW, van Kuijk SMJ, Stassen PM. A new simplified model for predicting 30-day mortality in older medical emergency department patients: the rise up score. Eur J Intern Med 2020; 77: 36-43
  • 39 van Dam PM, Zelis N, Stassen P. et al. Validating the RISE UP score for predicting prognosis in patients with COVID-19 in the emergency department: a retrospective study. BMJ Open 2021; 11 (02) e045141
  • 40 Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS—towards a national early warning score for detecting adult inpatient deterioration. Resuscitation 2010; 81 (08) 932-937
  • 41 Hawkes N. Royal college recommends national system to recognise deteriorating patients. BMJ 2012; 345: e5041
  • 42 Subudhi S, Verma A, Patel AB. et al. Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. NPJ Digit Med 2021; 4 (01) 87
  • 43 Moulaei K, Shanbehzadeh M, Mohammadi-Taghiabad Z, Kazemi-Arpanahi H. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med Inform Decis Mak 2022; 22 (01) 2
  • 44 Murri R, Lenkowicz J, Masciocchi C. et al; Gemelli against Covid Group. A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19. Sci Rep 2021; 11 (01) 21136
  • 45 Yadaw AS, Li YC, Bose S, Iyengar R, Bunyavanich S, Pandey G. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digit Health 2020; 2 (10) e516-e525
  • 46 Firestein GS. A biomarker by any other name.. Nat Clin Pract Rheumatol 2006; 2 (12) 635-635
  • 47 BEST. (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Accessed November 15, 2022 at: https://www.ncbi.nlm.nih.gov/books/NBK326791/
  • 48 Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20 (06) 363-374
  • 49 Ackermann M, Verleden SE, Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 (02) 120-128
  • 50 Del Valle DM, Kim-Schulze S, Huang H-H. et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020; 26 (10) 1636-1643
  • 51 Wauters E, Van Mol P, Garg AD. et al; CONTAGIOUS collaborators. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res 2021; 31 (03) 272-290
  • 52 Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020; 323 (22) 2329-2330
  • 53 Krans JL. The sliding filament theory of muscle contraction. Nature Educ 2010; 3 (09) 66
  • 54 Jarolim P. High sensitivity cardiac troponin assays in the clinical laboratories. Clin Chem Lab Med 2015; 53 (05) 635-652
  • 55 Collet JP, Thiele H, Barbato E. et al; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021; 42 (14) 1289-1367
  • 56 Korff S, Katus HA, Giannitsis E. Differential diagnosis of elevated troponins. Heart 2006; 92 (07) 987-993
  • 57 Salvatici M, Barbieri B, Cioffi SMG. et al. Association between cardiac troponin I and mortality in patients with COVID-19. Biomarkers 2020; 25 (08) 634-640
  • 58 Scotland RS, Ahluwalia A, Hobbs AJ. C-type natriuretic peptide in vascular physiology and disease. Pharmacol Ther 2005; 105 (02) 85-93
  • 59 Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339 (05) 321-328
  • 60 McFarlane SI, Winer N, Sowers JR. Role of the natriuretic peptide system in cardiorenal protection. Arch Intern Med 2003; 163 (22) 2696-2704
  • 61 Bettencourt PM. Clinical usefulness of B-type natriuretic peptide measurement: present and future perspectives. Heart 2005; 91 (11) 1489-1494
  • 62 Cunningham JW, Claggett BL, Jering KS. et al. Prognostic value of natriuretic peptides and cardiac troponins in COVID-19. Circulation 2021; 144 (02) 177-179
  • 63 Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6 (10) a016295-a016295
  • 64 Zhang J, Hao Y, Ou W. et al. Serum interleukin-6 is an indicator for severity in 901 patients with SARS-CoV-2 infection: a cohort study. J Transl Med 2020; 18 (01) 406
  • 65 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111 (12) 1805-1812
  • 66 Smilowitz NR, Kunichoff D, Garshick M. et al. C-reactive protein and clinical outcomes in patients with COVID-19. Eur Heart J 2021; 42 (23) 2270-2279
  • 67 Forkasiewicz A, Dorociak M, Stach K, Szelachowski P, Tabola R, Augoff K. The usefulness of lactate dehydrogenase measurements in current oncological practice. Cell Mol Biol Lett 2020; 25 (01) 35
  • 68 Szarpak L, Ruetzler K, Safiejko K. et al. Lactate dehydrogenase level as a COVID-19 severity marker. Am J Emerg Med 2021; 45: 638-639
  • 69 Huijgen HJ, Sanders GT, Koster RW, Vreeken J, Bossuyt PM. The clinical value of lactate dehydrogenase in serum: a quantitative review. Eur J Clin Chem Clin Biochem 1997; 35 (08) 569-579
  • 70 Assiri A, Al-Tawfiq JA, Al-Rabeeah AA. et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 2013; 13 (09) 752-761
  • 71 Vidal-Cevallos P, Higuera-De-La-Tijera F, Chávez-Tapia NC. et al. Lactate-dehydrogenase associated with mortality in hospitalized patients with COVID-19 in Mexico: a multi-centre retrospective cohort study. Ann Hepatol 2021; 24: 100338
  • 72 Martha JW, Wibowo A, Pranata R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: a systematic review and meta-analysis. Postgrad Med J 2022; 98 (1160): 422-427
  • 73 Torti FM, Torti SV. Regulation of ferritin genes and protein. Blood 2002; 99 (10) 3505-3516
  • 74 Wang W, Knovich MA, Coffman LG, Torti FM, Torti SV. Serum ferritin: past, present and future. Biochim Biophys Acta 2010; 1800 (08) 760-769
  • 75 Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood 2019; 133 (01) 40-50
  • 76 Makker J, Hanif A, Bajantri B, Chilimuri S. Dysmetabolic hyperferritinemia: all iron overload is not hemochromatosis. Case Rep Gastroenterol 2015; 9 (01) 7-14
  • 77 Wei Y, Miller SC, Tsuji Y, Torti SV, Torti FM. Interleukin 1 induces ferritin heavy chain in human muscle cells. Biochem Biophys Res Commun 1990; 169 (01) 289-296
  • 78 Ruscitti P, Di Benedetto P, Berardicurti O. et al. Pro-inflammatory properties of H-ferritin on human macrophages, ex vivo and in vitro observations. Sci Rep 2020; 10 (01) 12232
  • 79 Cansu DÜ, Teke HÜ, Cansu GB, Korkmaz C. Evaluation of hyperferritinemia causes in rheumatology practice: a retrospective, single-center experience. Rheumatol Int 2021; 41 (09) 1617-1624
  • 80 Senjo H, Higuchi T, Okada S, Takahashi O. Hyperferritinemia: causes and significance in a general hospital. Hematology 2018; 23 (10) 817-822
  • 81 Fautrel B, Le Moël G, Saint-Marcoux B. et al. Diagnostic value of ferritin and glycosylated ferritin in adult onset Still's disease. J Rheumatol 2001; 28 (02) 322-329
  • 82 Soy M, Atagündüz P, Atagündüz I, Sucak GT. Hemophagocytic lymphohistiocytosis: a review inspired by the COVID-19 pandemic. Rheumatol Int 2021; 41 (01) 7-18
  • 83 Núñez-Torrón C, Ferrer-Gómez A, Moreno Moreno E. et al. Secondary haemophagocytic lymphohistiocytosis in COVID-19: correlation of the autopsy findings of bone marrow haemophagocytosis with HScore. J Clin Pathol 2022; 75 (06) 383-389
  • 84 Alroomi M, Rajan R, Omar AA. et al. Ferritin level: a predictor of severity and mortality in hospitalized COVID-19 patients. Immun Inflamm Dis 2021; 9 (04) 1648-1655
  • 85 Tan L, Wang Q, Zhang D. et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther 2020; 5 (01) 33
  • 86 Liu Z, Long W, Tu M. et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J Infect 2020; 81 (02) 318-356
  • 87 Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: possible mechanisms. Scand J Immunol 2021; 93 (02) e12967
  • 88 Henry B, Cheruiyot I, Vikse J. et al. Lymphopenia and neutrophilia at admission predicts severity and mortality in patients with COVID-19: a meta-analysis. Acta Biomed 2020; 91 (03) e2020008
  • 89 Felsenfeld AJ, Levine BS. Calcitonin, the forgotten hormone: does it deserve to be forgotten?. Clin Kidney J 2015; 8 (02) 180-187
  • 90 Müller B, White JC, Nylén ES, Snider RH, Becker KL, Habener JF. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab 2001; 86 (01) 396-404
  • 91 Ghillani PP, Motté P, Troalen F. et al. Identification and measurement of calcitonin precursors in serum of patients with malignant diseases. Cancer Res 1989; 49 (23) 6845-6851
  • 92 Assicot M, Gendrel D, Carsin H, Raymond J, Guilbaud J, Bohuon C. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341 (8844): 515-518
  • 93 Becker KL, Snider R, Nylen ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 2008; 36 (03) 941-952
  • 94 Mann J, Cavallazzi R. Marked serum procalcitonin level in response to isolated anaphylactic shock. Am J Emerg Med 2015; 33 (01) 125.e5-125.e6
  • 95 Meisner M. Pathobiochemistry and clinical use of procalcitonin. Clin Chim Acta 2002; 323 (1-2): 17-29
  • 96 Schuetz P, Christ-Crain M, Thomann R. et al; ProHOSP Study Group. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 2009; 302 (10) 1059-1066
  • 97 Schuetz P, Wirz Y, Mueller B. Procalcitonin testing to guide antibiotic therapy in acute upper and lower respiratory tract infections. JAMA 2018; 319 (09) 925-926
  • 98 Pink I, Raupach D, Fuge J. et al. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection 2021; 49 (05) 935-943
  • 99 Xu JB, Xu C, Zhang RB. et al. Associations of procalcitonin, C-reaction protein and neutrophil-to-lymphocyte ratio with mortality in hospitalized COVID-19 patients in China. Sci Rep 2020; 10 (01) 15058
  • 100 Weitz JI, Fredenburgh JC, Eikelboom JW. A test in context: D-dimer. J Am Coll Cardiol 2017; 70 (19) 2411-2420
  • 101 Kollias A, Kyriakoulis KG, Lagou S, Kontopantelis E, Stergiou GS, Syrigos K. Venous thromboembolism in COVID-19: a systematic review and meta-analysis. Vasc Med 2021; 26 (04) 415-425
  • 102 Soni M, Gopalakrishnan R, Vaishya R, Prabu P. D-dimer level is a useful predictor for mortality in patients with COVID-19: analysis of 483 cases. Diabetes Metab Syndr 2020; 14 (06) 2245-2249
  • 103 Guan WJ, Ni ZY, Hu Y. et al; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382 (18) 1708-1720
  • 104 Chen N, Zhou M, Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395 (10223): 507-513
  • 105 Yang X, Yang Q, Wang Y. et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost 2020; 18 (06) 1469-1472
  • 106 Marcolino MS, Pires MC, Ramos LEF. et al. ABC2-SPH risk score for in-hospital mortality in COVID-19 patients: development, external validation and comparison with other available scores. Int J Infect Dis 2021; 110: 281-308
  • 107 Holten AR, Nore KG, Tveiten CEVWK, Olasveengen TM, Tonby K. Predicting severe COVID-19 in the emergency department. Resusc Plus 2020; 4: 100042
  • 108 Berenguer J, Borobia AM, Ryan P. et al; COVID-19@Spain and COVID@HULP Study Groups. Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: the COVID-19 SEIMC score. Thorax 2021; 76 (09) 920-929
  • 109 Tanboğa IH, Canpolat U, Çetin EHÖ. et al. Development and validation of clinical prediction model to estimate the probability of death in hospitalized patients with COVID-19: Insights from a nationwide database. J Med Virol 2021; 93 (05) 3015-3022
  • 110 Weng Z, Chen Q, Li S. et al. ANDC: an early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J Transl Med 2020; 18 (01) 328
  • 111 Myrstad M, Ihle-Hansen H, Tveita AA. et al. National Early Warning Score 2 (NEWS2) on admission predicts severe disease and in-hospital mortality from Covid-19—a prospective cohort study. Scand J Trauma Resusc Emerg Med 2020; 28 (01) 66
  • 112 Liu FY, Sun XL, Zhang Y. et al. Evaluation of the risk prediction tools for patients with coronavirus disease 2019 in Wuhan, China: a single-centered, retrospective, observational study. Crit Care Med 2020; 48 (11) e1004-e1011
  • 113 Carr E, Bendayan R, Bean D. et al. Evaluation and improvement of the National Early Warning Score (NEWS2) for COVID-19: a multi-hospital study. BMC Med 2021; 19 (01) 23
  • 114 Padilla O, Abadie J. Blood tests: normal values. In: Manual Merck Professional Version 2021. Accessed July 9, 2022 at: https://www.merckmanuals.com/professional/resources/normal-laboratory-values/blood-tests-normal-values
  • 115 University of Washington Laboratory Medicine and Pathology. Diagnostic Services in Laboratory Medicine & Pathology. Accessed November 15, 2022 at: https://dlmp.uw.edu/patient-care/patient-care-in-dlmp
  • 116 Galván-Román JM, Rodríguez-García SC, Roy-Vallejo E. et al; REINMUN-COVID Group. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: an observational study. J Allergy Clin Immunol 2021; 147 (01) 72-80.e8
  • 117 Strand V, Boklage SH, Kimura T, Joly F, Boyapati A, Msihid J. High levels of interleukin-6 in patients with rheumatoid arthritis are associated with greater improvements in health-related quality of life for sarilumab compared with adalimumab. Arthritis Res Ther 2020; 22 (01) 250
  • 118 Camon AM, Alonso R, Muñoz FJ. et al; Hospital Clinic of Barcelona COVID-19 Research Group. C-reactive protein cut-off for early tocilizumab and dexamethasone prescription in hospitalized patients with COVID-19. Sci Rep 2022; 12 (01) 5250
  • 119 Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter S. Lymphocytes and the cellular basis of adaptive immunity. In Molecular Biology of the Cell. 4th ed.. New York: Garland Science; 2002
  • 120 Brass D, McKay P, Scott F. Investigating an incidental finding of lymphopenia. BMJ 2014; 348: g1721
  • 121 Gremmel T, Frelinger III AL, Michelson AD. Platelet physiology. Semin Thromb Hemost 2016; 42 (03) 191-204
  • 122 Zarychanski R, Houston DS. Assessing thrombocytopenia in the intensive care unit: the past, present, and future. Hematology (Am Soc Hematol Educ Program) 2017; 2017 (01) 660-666