Semin Musculoskelet Radiol 2023; 27(03): 283-292
DOI: 10.1055/s-0043-1766098
Review Article

Bone Stress Injuries at the Ankle and Foot

1   Musculoskeletal Imaging, Department of Radiology, Kantonsspital Graubünden, Chur, Switzerland
2   Department of Diagnostic and Interventional Radiology, Medical Center–University of Freiburg, Freiburg, Germany
,
1   Musculoskeletal Imaging, Department of Radiology, Kantonsspital Graubünden, Chur, Switzerland
› Author Affiliations

Abstract

Bone stress injuries (BSIs) are a frequent finding in athletes, particularly of the foot and ankle. A BSI is caused by recurring microtrauma to the cortical or trabecular bone exceeding the repair capacity of normal bone. The most frequent fractures at the ankle are low risk, characterized by a low risk for nonunion. These include the posteromedial tibia, the calcaneus, and the metatarsal diaphysis. High-risk stress fractures have a higher risk for nonunion and need more aggressive treatment. Examples are the medial malleolus, navicular bone, and the base of the second and fifth metatarsal bone.

Imaging features depend on the primary involvement of cortical versus trabecular bone. Conventional radiographs may remain normal up to 2 to 3 weeks. For cortical bone, early signs of BSIs are a periosteal reaction or the “gray cortex sign,” followed by cortical thickening and fracture line depiction. In trabecular bone, a sclerotic dense line may be seen. Magnetic resonance imaging enables early detection of BSIs and can differentiate between a stress reaction and a fracture. We review typical anamnestic/clinical findings, epidemiology and risk factors, imaging characteristics, and findings at typical locations of BSIs at the foot and ankle that may help guide treatment strategy and patient recovery.



Publication History

Article published online:
25 May 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hayashi D, Jarraya M, Engebretsen L. et al. Epidemiology of imaging-detected bone stress injuries in athletes participating in the Rio de Janeiro 2016 Summer Olympics. Br J Sports Med 2018; 52 (07) 470-474
  • 2 Schweitzer ME, Karasick D. MR imaging of disorders of the Achilles tendon. AJR Am J Roentgenol 2000; 175 (03) 613-625
  • 3 Meurman KO, Elfving S. Stress fracture in soldiers: a multifocal bone disorder. A comparative radiological and scintigraphic study. Radiology 1980; 134 (02) 483-487
  • 4 DeJong AF, Fish PN, Hertel J. Running behaviors, motivations, and injury risk during the COVID-19 pandemic: a survey of 1147 runners. PLoS One 2021; 16 (02) e0246300
  • 5 Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 2016; 44 (01) 255-263
  • 6 Marshall RA, Mandell JC, Weaver MJ, Ferrone M, Sodickson A, Khurana B. Imaging features and management of stress, atypical, and pathologic fractures. Radiographics 2018; 38 (07) 2173-2192
  • 7 Caine D, Meyers R, Nguyen J, Schöffl V, Maffulli N. Primary periphyseal stress injuries in young athletes: a systematic review. Sports Med 2022; 52 (04) 741-772
  • 8 Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skeletal Radiol 2017; 46 (08) 1021-1029
  • 9 Kaeding CC, Najarian RG. Stress fractures: classification and management. Phys Sportsmed 2010; 38 (03) 45-54
  • 10 Mayer SW, Joyner PW, Almekinders LC, Parekh SG. Stress fractures of the foot and ankle in athletes. Sports Health 2014; 6 (06) 481-491
  • 11 Saini MK, Reddy NR, Reddy PJ. Stress fracture of isolated middle cuneiform bone in a trainee physician: a case report and review. J Foot Ankle Surg 2020; 59 (06) 1283-1286
  • 12 Ribbans WJ, Aujla RS, Ashour R, Allen PE, Wood EV. Vitamin D and foot and ankle trauma: an individual or societal problem. Foot 2019; 39: 100-105
  • 13 Miller JR, Dunn KW, Ciliberti Jr LJ, Patel RD, Swanson BA. Association of Vitamin D with stress fractures: a retrospective cohort study. J Foot Ankle Surg 2016; 55 (01) 117-120
  • 14 Otis CL, Drinkwater B, Johnson M, Loucks A, Wilmore J. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 1997; 29 (05) i-ix
  • 15 Tenforde AS, Carlson JL, Chang A. et al. Association of the female athlete triad risk assessment stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med 2017; 45 (02) 302-310
  • 16 Mountjoy M, Sundgot-Borgen J, Burke L. et al. The IOC consensus statement: beyond the female athlete triad—relative energy deficiency in sport (RED-S). Br J Sports Med 2014; 48 (07) 491-497
  • 17 Tins B, Cassar-Pullicino V. Marrow changes in anorexia nervosa masking the presence of stress fractures on MR imaging. Skeletal Radiol 2006; 35 (11) 857-860
  • 18 Sharma S, Dhillon MS, Kumar P, Rajnish RK. Patterns and trends of foot and ankle injuries in Olympic athletes: a systematic review and meta-analysis. Indian J Orthop 2020; 54 (03) 294-307
  • 19 Seshadri DR, Thom ML, Harlow ER, Drummond CK, Voos JE. Case report: Return to sport following the COVID-19 lockdown and its impact on injury rates in the German Soccer League. Front Sports Act Living 2021; 3: 604226
  • 20 Bisciotti GN, Eirale C, Corsini A, Baudot C, Saillant G, Chalabi H. Return to football training and competition after lockdown caused by the COVID-19 pandemic: medical recommendations. Biol Sport 2020; 37 (03) 313-319
  • 21 Sarto F, Impellizzeri FM, Spörri J. et al. Impact of potential physiological changes due to COVID-19 home confinement on athlete health protection in elite sports: a call for awareness in sports programming. Sports Med 2020; 50 (08) 1417-1419
  • 22 Boden BP, Osbahr DC, Jimenez C. Low-risk stress fractures. Am J Sports Med 2001; 29 (01) 100-111
  • 23 Matheson GO, Clement DB, McKenzie DC, Taunton JE, Lloyd-Smith DR, MacIntyre JG. Stress fractures in athletes. A study of 320 cases. Am J Sports Med 1987; 15 (01) 46-58
  • 24 Steingruber IE, Wolf C, Gruber H. et al. Stress fractures in athletes. [in German]. Radiologe 2002; 42 (10) 771-777
  • 25 Uhl M. Stress fractures. [in German]. Radiologe 2016; 56 (07) 631-644
  • 26 Saxena A, Behan SA, Valerio DL, Frosch DL. Navicular stress fracture outcomes in athletes: analysis of 62 injuries. J Foot Ankle Surg 2017; 56 (05) 943-948
  • 27 Mandell JC, Khurana B, Smith SE. Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skeletal Radiol 2017; 46 (09) 1165-1186
  • 28 McInnis KC, Ramey LN. High-risk stress fractures: diagnosis and management. PM R 2016; 8 (3, Suppl): S113-S124
  • 29 Feydy A, Drapé J, Beret E. et al. Longitudinal stress fractures of the tibia: comparative study of CT and MR imaging. Eur Radiol 1998; 8 (04) 598-602
  • 30 Savoca CJ. Stress fractures. A classification of the earliest radiographic signs. Radiology 1971; 100 (03) 519-524
  • 31 Mulligan ME. The “gray cortex”: an early sign of stress fracture. Skeletal Radiol 1995; 24 (03) 201-203
  • 32 Greaney RB, Gerber FH, Laughlin RL. et al. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology 1983; 146 (02) 339-346
  • 33 Yoshimoto K, Noguchi M, Maruki H, Ishibashi M, Okazaki K. Nonunion of a medial malleolar stress fracture in an adolescent athlete secondary to lateral ankle instability: a case report. Int J Surg Case Rep 2021; 78: 235-240
  • 34 Porter DA. Fifth metatarsal Jones fractures in the athlete. Foot Ankle Int 2018; 39 (02) 250-258
  • 35 Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995; 23 (04) 472-481
  • 36 Serino J, Kunze KN, Jacobsen SK. et al. Nuclear medicine for the orthopedic foot and ankle surgeon. Foot Ankle Int 2020; 41 (05) 612-623
  • 37 Bianchi S, Luong DH. Stress fractures of the calcaneus diagnosed by sonography: report of 8 cases. J Ultrasound Med 2018; 37 (02) 521-529
  • 38 Chisin R, Milgrom C, Giladi M, Stein M, Margulies J, Kashtan H. Clinical significance of nonfocal scintigraphic findings in suspected tibial stress fractures. Clin Orthop Relat Res 1987; (220) 200-205
  • 39 Arendt EA, Griffiths HJ. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes. Clin Sports Med 1997; 16 (02) 291-306
  • 40 Dobrindt O, Hoffmeyer B, Ruf J. et al. Estimation of return-to-sports-time for athletes with stress fracture—an approach combining risk level of fracture site with severity based on imaging. BMC Musculoskelet Disord 2012; 13: 139
  • 41 Nattiv A, Kennedy G, Barrack MT. et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med 2013; 41 (08) 1930-1941
  • 42 Kijowski R, Choi J, Shinki K, Del Rio AM, De Smet A. Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol 2012; 198 (04) 878-884
  • 43 Kaeding CC, Miller T. The comprehensive description of stress fractures: a new classification system. J Bone Joint Surg Am 2013; 95 (13) 1214-1220
  • 44 Porter DA, Klott J. Proximal fifth metatarsal fractures in athletes: management of acute and chronic conditions. Foot Ankle Clin 2021; 26 (01) 35-63
  • 45 Tschopp M, Brunner F. [Diseases and overuse injuries of the lower extremities in long distance runners]. Z Rheumatol 2017; 76 (05) 443-450
  • 46 Daffner RH, Pavlov H. Stress fractures: current concepts. AJR Am J Roentgenol 1992; 159 (02) 245-252
  • 47 Brukner P, Bradshaw C, Khan KM, White S, Crossley K. Stress fractures: a review of 180 cases. Clin J Sport Med 1996; 6 (02) 85-89
  • 48 Lempainen L, Liimatainen E, Heikkilä J. et al. Medial malleolar stress fracture in athletes: diagnosis and operative treatment. Scand J Surg 2012; 101 (04) 261-264
  • 49 Jowett AJ, Birks CL, Blackney MC. Medial malleolar stress fracture secondary to chronic ankle impingement. Foot Ankle Int 2008; 29 (07) 716-721
  • 50 Greaser MC. Foot and ankle stress fractures in athletes. Orthop Clin North Am 2016; 47 (04) 809-822
  • 51 Nguyen A, Beasley I, Calder J. Stress fractures of the medial malleolus in the professional soccer player demonstrate excellent outcomes when treated with open reduction internal fixation and arthroscopic spur debridement. Knee Surg Sports Traumatol Arthrosc 2019; 27 (09) 2884-2889
  • 52 Ekenman I, Tsai-Felländer L, Johansson C, O'Brien M. The plantar flexor muscle attachments on the tibia. A cadaver study. Scand J Med Sci Sports 1995; 5 (03) 160-164
  • 53 Kiuru MJ, Pihlajamäki HK, Ahovuo JA. Bone stress injuries. Acta Radiol 2004; 45 (03) 317-326
  • 54 Sarpong NO, Levitsky M, Held M, Coury J, Greisberg J, Vosseller JT. Isolated fibular stress fractures: radiographic parameters. Foot Ankle Surg 2020; 26 (08) 935-938
  • 55 Sormaala MJ, Niva MH, Kiuru MJ, Mattila VM, Pihlajamäki HK. Bone stress injuries of the talus in military recruits. Bone 2006; 39 (01) 199-204
  • 56 Elias I, Zoga AC, Raikin SM. et al. Bone stress injury of the ankle in professional ballet dancers seen on MRI. BMC Musculoskelet Disord 2008; 9: 39
  • 57 Kim YS, Lee HM, Kim JP, Moon HS. Fatigue stress fracture of the talar body: an uncommon cause of ankle pain. J Foot Ankle Surg 2016; 55 (05) 1113-1116
  • 58 Italiano J, Bitterman AD. Diagnosis and management of calcaneal stress fractures. Radiol Technol 2021; 93 (02) 177-194
  • 59 Vera AM, Patel KA. Stress fractures of the foot and ankle. Oper Tech Sports Med 2021; 29(03):
  • 60 Pearce CJ, Zaw H, Calder JD. Stress fracture of the anterior process of the calcaneus associated with a calcaneonavicular coalition: a case report. Foot Ankle Int 2011; 32 (01) 85-88
  • 61 Kehoe CM, Scher DM. Sustentaculum tali fracture adjacent to talocalcaneal tarsal coalitions: a report of 2 cases. JBJS Case Connect 2021; 11 (01) 00360
  • 62 Khan KM, Brukner PD, Kearney C, Fuller PJ, Bradshaw CJ, Kiss ZS. Tarsal navicular stress fracture in athletes. Sports Med 1994; 17 (01) 65-76
  • 63 de Clercq PF, Bevernage BD, Leemrijse T. Stress fracture of the navicular bone. Acta Orthop Belg 2008; 74 (06) 725-734
  • 64 Saxena A, Fullem B, Hannaford D. Results of treatment of 22 navicular stress fractures and a new proposed radiographic classification system. J Foot Ankle Surg 2000; 39 (02) 96-103
  • 65 Nunley JA, Green C, Morash J, Easley ME. Treatment of navicular stress fractures with an algorithmic approach. Foot Ankle Int 2022; 43 (01) 12-20
  • 66 Unnithan S, Thomas J. Not all ankle injuries are ankle sprains—case of an isolated cuboid stress fracture. Clin Pract 2018; 8 (03) 1093
  • 67 Bui-Mansfield LT, Thomas WR. Magnetic resonance imaging of stress injury of the cuneiform bones in patients with plantar fasciitis. J Comput Assist Tomogr 2009; 33 (04) 593-596
  • 68 Vukic T, Ivkovic A, Jankovic S. Stress fracture of the lateral cuneiform bone: a case report. J Am Podiatr Med Assoc 2013; 103 (04) 337-339
  • 69 Ficek K, Cyganik P, Rajca J. et al. Stress fractures in uncommon location: Six case reports and review of the literature. World J Clin Cases 2020; 8 (18) 4135-4150
  • 70 Creighton R, Sonoga A, Gordon G. Stress fracture of the tarsal middle cuneiform bone. A case report. J Am Podiatr Med Assoc 1990; 80 (09) 489-495
  • 71 Welck MJ, Hayes T, Pastides P, Khan W, Rudge B. Stress fractures of the foot and ankle. Injury 2017; 48 (08) 1722-1726
  • 72 Albisetti W, Perugia D, De Bartolomeo O, Tagliabue L, Camerucci E, Calori GM. Stress fractures of the base of the metatarsal bones in young trainee ballet dancers. Int Orthop 2010; 34 (01) 51-55
  • 73 Ramponi DR. Proximal fifth metatarsal fractures. Adv Emerg Nurs J 2013; 35 (04) 287-292
  • 74 Bezuglov E, Zholinsky A, Chernov G. et al. Conservative treatment of the fifth metatarsal bone fractures in professional football players using platelet-rich plasma. Foot Ankle Spec 2022; 15 (01) 62-66
  • 75 Torg JS. Fractures of the base of the fifth metatarsal distal to the tuberosity. Orthopedics 1990; 13 (07) 731-737
  • 76 Lee KT, Park YU, Young KW, Kim JS, Kim JB. The plantar gap: another prognostic factor for fifth metatarsal stress fracture. Am J Sports Med 2011; 39 (10) 2206-2211
  • 77 Allahabadi S, Amendola A, Lau BC. Optimizing return to play for common and controversial foot and ankle sports injuries. JBJS Rev 2020; 8 (12) 00067
  • 78 Lee KT, Park YU, Jegal H, Kim KC, Young KW, Kim JS. Factors associated with recurrent fifth metatarsal stress fracture. Foot Ankle Int 2013; 34 (12) 1645-1653
  • 79 Hubay CA. Sesamoid bones of the hands and feet. Am J Roentgenol Radium Ther 1949; 61 (04) 493-505
  • 80 Bizarro AH. On the traumatology of the sesamoid structures. Ann Surg 1921; 74 (06) 783-791
  • 81 Van Hal ME, Keene JS, Lange TA, Clancy Jr WG. Stress fractures of the great toe sesamoids. Am J Sports Med 1982; 10 (02) 122-128
  • 82 Biedert R, Hintermann B. Stress fractures of the medial great toe sesamoids in athletes. Foot Ankle Int 2003; 24 (02) 137-141
  • 83 Biedert R. Which investigations are required in stress fracture of the great toe sesamoids?. Arch Orthop Trauma Surg 1993; 112 (02) 94-95