Semin Neurol 2023; 43(04): 495-505
DOI: 10.1055/s-0043-1771466
Review Article

Overview of the Enteric Nervous System

Gary M. Mawe
1   Department of Neurological Sciences, The University of Vermont, Burlington, Vermont
,
Kenton M. Sanders
2   Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
,
Michael Camilleri
3   Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Funding M.C.: DK122280 and DK125680.
G.M.M.: AT011203 and DK113800.
K.M.S.: DK057236 and DK120759.

Abstract

Propulsion of contents in the gastrointestinal tract requires coordinated functions of the extrinsic nerves to the gut from the brain and spinal cord, as well as the neuromuscular apparatus within the gut. The latter includes excitatory and inhibitory neurons, pacemaker cells such as the interstitial cells of Cajal and fibroblast-like cells, and smooth muscle cells. Coordination between these extrinsic and enteric neurons results in propulsive functions which include peristaltic reflexes, migrating motor complexes in the small intestine which serve as the housekeeper propelling to the colon the residual content after digestion, and mass movements in the colon which lead to defecation.

Authors' Contributions

M.C., G.M.M., and K.M.S. conceived, developed, and wrote the entire manuscript.




Publication History

Article published online:
10 August 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Camilleri M, Shin A. Novel and validated approaches for gastric emptying scintigraphy in patients with suspected gastroparesis. Dig Dis Sci 2013; 58 (07) 1813-1815
  • 2 Camilleri M, Malagelada JR, Brown ML, Becker G, Zinsmeister AR. Relation between antral motility and gastric emptying of solids and liquids in humans. Am J Physiol 1985; 249 (5, Pt 1): G580-G585
  • 3 Camilleri M, Brown ML, Malagelada JR. Relationship between impaired gastric emptying and abnormal gastrointestinal motility. Gastroenterology 1986; 91 (01) 94-99
  • 4 Hinder RA. Individual and combined roles of the pylorus and the antrum in the canine gastric emptying of a liquid and a digestible solid. Gastroenterology 1983; 84 (02) 281-286
  • 5 Anvari M, Horowitz M, Fraser R. et al. Effects of posture on gastric emptying of nonnutrient liquids and antropyloroduodenal motility. Am J Physiol 1995; 268 (5, Pt 1): G868-G871
  • 6 Moragas G, Azpiroz F, Pavia J, Malagelada JR. Relations among intragastric pressure, postcibal perception, and gastric emptying. Am J Physiol 1993; 264 (6, Pt 1): G1112-G1117
  • 7 Thumshirn M, Bruninga K, Camilleri M. Simplifying the evaluation of postprandial antral motor function in patients with suspected gastroparesis. Am J Gastroenterol 1997; 92 (09) 1496-1500
  • 8 Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L. American College of Gastroenterology. Clinical guideline: management of gastroparesis. Am J Gastroenterol 2013; 108 (01) 18-37 , quiz 38
  • 9 Bayliss WM, Starling EH. The movements and innervation of the small intestine. J Physiol 1899; 24 (02) 99-143
  • 10 Langley JN. The Autonomic Nervous System. Heffer; 1921
  • 11 Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103 (02) 1487-1564
  • 12 Hertz AF. The passage of food along the human alimentary canal. Guys Hosp Rep 1907; 61: 389-427
  • 13 Holzknechtg G. Die normale Persistatlik des Kolon. Munch Med Wochenschr 1909; 47: 2401-2403
  • 14 Alvarez WC. An Introduction to Gastroenterology, 4th ed. Paul B. Hoeber, Inc.; 1948
  • 15 Torsoli A, Ramorino ML, Ammaturo MV, Capurso L, Paoluzi P, Anzini F. Mass movements and intracolonic pressures. Am J Dig Dis 1971; 16 (08) 693-696
  • 16 Narducci F, Bassotti G, Gaburri M, Morelli A. Twenty four hour manometric recording of colonic motor activity in healthy man. Gut 1987; 28 (01) 17-25
  • 17 Bassotti G, Gaburri M. Manometric investigation of high-amplitude propagated contractile activity of the human colon. Am J Physiol 1988; 255 (5, Pt 1): G660-G664
  • 18 Rao SS, Sadeghi P, Beaty J, Kavlock R, Ackerson K. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol 2001; 280 (04) G629-G639
  • 19 Furukawa Y, Cook IJ, Panagopoulos V, McEvoy RD, Sharp DJ, Simula M. Relationship between sleep patterns and human colonic motor patterns. Gastroenterology 1994; 107 (05) 1372-1381
  • 20 Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. Prolonged multi-point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol 2001; 96 (06) 1838-1848
  • 21 Hardcastle JD, Mann CV. Study of large bowel peristalsis. Gut 1968; 9 (05) 512-520
  • 22 Kamm MA, van der Sijp JR, Lennard-Jones JE. Observations on the characteristics of stimulated defaecation in severe idiopathic constipation. Int J Colorectal Dis 1992; 7 (04) 197-201
  • 23 Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, Cook IJ. The proximal colonic motor response to rectal mechanical and chemical stimulation. Am J Physiol Gastrointest Liver Physiol 2002; 282 (03) G443-G449
  • 24 De Schryver AM, Samsom M, Smout AI. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci 2003; 48 (07) 1206-1212
  • 25 Jouët P, Sabaté J-M, Coffin B, Lémann M, Jian R, Flourié B. Fermentation of starch stimulates propagated contractions in the human colon. Neurogastroenterol Motil 2011; 23 (05) 450-456 , e176
  • 26 Cook IJ, Furukawa Y, Panagopoulos V, Collins PJ, Dent J. Relationships between spatial patterns of colonic pressure and individual movements of content. Am J Physiol Gastrointest Liver Physiol 2000; 278 (02) G329-G341
  • 27 Bampton PA, Dinning PG, Kennedy ML, Lubowski DZ, deCarle D, Cook IJ. Spatial and temporal organization of pressure patterns throughout the unprepared colon during spontaneous defecation. Am J Gastroenterol 2000; 95 (04) 1027-1035
  • 28 Lubowski DZ, Meagher AP, Smart RC, Butler SP. Scintigraphic assessment of colonic function during defaecation. Int J Colorectal Dis 1995; 10 (02) 91-93
  • 29 Bassotti G, Gaburri M, Imbimbo BP. et al. Colonic mass movements in idiopathic chronic constipation. Gut 1988; 29 (09) 1173-1179
  • 30 Dinning PG, Zarate N, Hunt LM. et al. Pancolonic spatiotemporal mapping reveals regional deficiencies in, and disorganization of colonic propagating pressure waves in severe constipation. Neurogastroenterol Motil 2010; 22 (12) e340-e349
  • 31 Bazzocchi G, Ellis J, Villanueva-Meyer J. et al. Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology 1990; 98 (03) 686-693
  • 32 Choi M-G, Camilleri M, O'Brien MD, Kammer PP, Hanson RB. A pilot study of motility and tone of the left colon in patients with diarrhea due to functional disorders and dysautonomia. Am J Gastroenterol 1997; 92 (02) 297-302
  • 33 Chey WY, Jin HO, Lee MH, Sun SW, Lee KY. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol 2001; 96 (05) 1499-1506
  • 34 Ritchie JA. Colonic motor activity and bowel function. I. Normal movement of contents. Gut 1968; 9 (04) 442-456
  • 35 Halls J. Bowel content shift during normal defaecation. [summary] Proc R Soc Med 1965; 58 (11, Pt 1): 859-860
  • 36 Hiroz P, Schlageter V, Givel JC, Kucera P. Colonic movements in healthy subjects as monitored by a Magnet Tracking System. Neurogastroenterol Motil 2009; 21 (08) 838-e57
  • 37 Moreno-Osset E, Bazzocchi G, Lo S. et al. Association between postprandial changes in colonic intraluminal pressure and transit. Gastroenterology 1989; 96 (5, Pt 1): 1265-1273
  • 38 Dinning PG, Szczesniak MM, Cook IJ. Proximal colonic propagating pressure waves sequences and their relationship with movements of content in the proximal human colon. Neurogastroenterol Motil 2008; 20 (05) 512-520
  • 39 Dinning PG, Wiklendt L, Maslen L. et al. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol Motil 2014; 26 (10) 1443-1457
  • 40 Lin AY, Du P, Dinning PG. et al. High-resolution anatomic correlation of cyclic motor patterns in the human colon: evidence of a rectosigmoid brake. Am J Physiol Gastrointest Liver Physiol 2017; 312 (05) G508-G515
  • 41 Rao SS, Welcher K. Periodic rectal motor activity: the intrinsic colonic gatekeeper?. Am J Gastroenterol 1996; 91 (05) 890-897
  • 42 Gladen HE, Kelly KA. Enhancing absorption in the canine short bowel syndrome by intestinal pacing. Surgery 1980; 88 (02) 281-286
  • 43 Kern Jr F, Almy TP, Abbot FK, Bogdonoff MD. The motility of the distal colon in nonspecific ulcerative colitis. Gastroenterology 1951; 19 (03) 492-503
  • 44 Bazzocchi G, Ellis J, Villanueva-Meyer J, Reddy SN, Mena I, Snape Jr WJ. Effect of eating on colonic motility and transit in patients with functional diarrhea. Simultaneous scintigraphic and manometric evaluations. Gastroenterology 1991; 101 (05) 1298-1306
  • 45 von der Ohe MR, Hanson RB, Camilleri M. Comparison of simultaneous recordings of human colonic contractions by manometry and a barostat. Neurogastroenterol Motil 1994; 6: 213-222
  • 46 Mueller JL, Goldstein AM. The science of Hirschsprung disease: what we know and where we are headed. Semin Pediatr Surg 2022; 31 (02) 151157
  • 47 Reigstad CS, Salmonson CE, Rainey III JF. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015; 29 (04) 1395-1403
  • 48 Mawe GM, Hoffman JM. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2013; 10 (08) 473-486
  • 49 Alemi F, Poole DP, Chiu J. et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013; 144 (01) 145-154
  • 50 Bellono NW, Bayrer JR, Leitch DB. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017; 170 (01) 185-198.e16
  • 51 Wang F, Knutson K, Alcaino C. et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 2017; 595 (01) 79-91
  • 52 Wattchow DA, Brookes SJ, Costa M. The morphology and projections of retrogradely labeled myenteric neurons in the human intestine. Gastroenterology 1995; 109 (03) 866-875
  • 53 Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94 (03) 859-907
  • 54 McClain J, Grubišić V, Fried D. et al. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 2014; 146 (02) 497-507.e1
  • 55 Furness JB, Callaghan BP, Rivera LR, Cho H-J. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71
  • 56 LePard KJ, Ren J, Galligan JJ. Presynaptic modulation of cholinergic and non-cholinergic fast synaptic transmission in the myenteric plexus of guinea pig ileum. Neurogastroenterol Motil 2004; 16 (03) 355-364
  • 57 Berthoud HR, Carlson NR, Powley TL. Topography of efferent vagal innervation of the rat gastrointestinal tract. Am J Physiol 1991; 260 (1, Pt 2): R200-R207
  • 58 De Groat WC, Krier J. The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat. J Physiol 1978; 276: 481-500
  • 59 Morgan KG, Muir TC, Szurszewski JH. The electrical basis for contraction and relaxation in canine fundal smooth muscle. J Physiol 1981; 311: 475-488
  • 60 el-Sharkawy TY, Morgan KG, Szurszewski JH. Intracellular electrical activity of canine and human gastric smooth muscle. J Physiol 1978; 279: 291-307
  • 61 Koh SD, Ward SM, Sanders KM. Ionic conductances regulating the excitability of colonic smooth muscles. Neurogastroenterol Motil 2012; 24 (08) 705-718
  • 62 Horiguchi K, Komuro T. Ultrastructural observations of fibroblast-like cells forming gap junctions in the W/W(nu) mouse small intestine. J Auton Nerv Syst 2000; 80 (03) 142-147
  • 63 Ishikawa K, Komuro T, Hirota S, Kitamura Y. Ultrastructural identification of the c-kit-expressing interstitial cells in the rat stomach: a comparison of control and Ws/Ws mutant rats. Cell Tissue Res 1997; 289 (01) 137-143
  • 64 Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility – insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9 (11) 633-645
  • 65 Burns AJ, Lomax AE, Torihashi S, Sanders KM, Ward SM. Interstitial cells of Cajal mediate inhibitory neurotransmission in the stomach. Proc Natl Acad Sci U S A 1996; 93 (21) 12008-12013
  • 66 Ward SM, Beckett EA, Wang X, Baker F, Khoyi M, Sanders KM. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons. J Neurosci 2000; 20 (04) 1393-1403
  • 67 Ward SM, Burns AJ, Torihashi S, Sanders KM. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 1994; 480 (Pt 1): 91-97
  • 68 Huizinga JD, Thuneberg L, Klüppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995; 373 (6512): 347-349
  • 69 Bayguinov PO, Hennig GW, Smith TK. Ca2+ imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine. J Physiol 2010; 588 (Pt 22): 4453-4474
  • 70 Koh SD, Drumm BT, Lu H. et al. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022; 119 (18) e2123020119
  • 71 Rhee PL, Lee JY, Son HJ. et al. Analysis of pacemaker activity in the human stomach. J Physiol 2011; 589 (Pt 24): 6105-6118
  • 72 Kelly KA, Code CF. Canine gastric pacemaker. Am J Physiol 1971; 220 (01) 112-118
  • 73 Drumm BT, Hennig GW, Battersby MJ. et al. Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol 2017; 149 (07) 703-725
  • 74 Spencer NJ, Hu H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17 (06) 338-351
  • 75 Furness JB, Di Natale M, Hunne B. et al. The identification of neuronal control pathways supplying effector tissues in the stomach. Cell Tissue Res 2020; 382 (03) 433-445
  • 76 Cipriani G, Terhaar ML, Eisenman ST. et al. Muscularis propria macrophages alter the proportion of nitrergic but not cholinergic gastric myenteric neurons. Cell Mol Gastroenterol Hepatol 2019; 7 (03) 689-691.e4
  • 77 Brookes SJH, Hennig G, Schemann M. Identification of motor neurons to the circular muscle of the guinea pig gastric corpus. J Comp Neurol 1998; 397 (02) 268-280
  • 78 Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Interstitial cells in the primate gastrointestinal tract. Cell Tissue Res 2012; 350 (02) 199-213
  • 79 Blair PJ, Bayguinov Y, Sanders KM, Ward SM. Relationship between enteric neurons and interstitial cells in the primate gastrointestinal tract. Neurogastroenterol Motil 2012; 24 (09) e437-e449
  • 80 Sung TS, Hwang SJ, Koh SD. et al. The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. J Physiol 2018; 596 (09) 1549-1574
  • 81 Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM. A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 2011; 589 (Pt 3): 697-710
  • 82 Mitsui R, Komuro T. Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal. Cell Tissue Res 2002; 309 (02) 219-227
  • 83 Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM. Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca2+ release via M3 receptor activation. FASEB J 2020; 34 (08) 10073-10095
  • 84 Baker SA, Drumm BT, Cobine CA, Keef KD, Sanders KM. Inhibitory neural regulation of the Ca 2+ transients in intramuscular interstitial cells of Cajal in the small intestine. Front Physiol 2018; 9: 328
  • 85 Sanders KM, Ward SM. Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Br J Pharmacol 2019; 176 (02) 212-227
  • 86 Hirst GD, Dickens EJ, Edwards FR. Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol 2002; 541 (Pt 3): 917-928
  • 87 Forrest AS, Ordög T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Gastrointest Liver Physiol 2006; 290 (03) G486-G495
  • 88 Kurahashi M, Baker SA, Kito Y. et al. PDGFRα+ interstitial cells are effector cells of PACAP signaling in mouse and human colon. Cell Mol Gastroenterol Hepatol 2022; 14 (02) 357-373
  • 89 Kurahashi M, Kito Y, Hara M, Takeyama H, Sanders KM, Hashitani H. Norepinephrine has dual effects on human colonic contractions through distinct subtypes of alpha 1 adrenoceptors. Cell Mol Gastroenterol Hepatol 2020; 10 (03) 658-671.e1
  • 90 Kurahashi M, Kito Y, Baker SA. et al. A novel postsynaptic signal pathway of sympathetic neural regulation of murine colonic motility. FASEB J 2020; 34 (04) 5563-5577
  • 91 Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil 2014; 26 (05) 611-624
  • 92 Mawe GM, Browning KN, Manfredsson FP. et al. 2021 Workshop: neurodegenerative diseases in the gut-brain axis – Parkinson's disease. Gastroenterology 2022; 162 (06) 1574-1582
  • 93 Camilleri M, Subramanian T, Pagan F. et al. Oral ENT-01 targets enteric neurons to treat constipation in Parkinson disease : a randomized controlled trial. Ann Intern Med 2022; 175 (12) 1666-1674
  • 94 Mawe GM. Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J Clin Invest 2015; 125 (03) 949-955
  • 95 Camilleri M, Chedid V, Ford AC. et al. Gastroparesis. Nat Rev Dis Primers 2018; 4 (01) 41
  • 96 Lu K-H, Cao J, Oleson S. et al. Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging. Neurogastroenterol Motil 2018; 30 (10) e13380
  • 97 Camilleri M. Gastrointestinal motility disorders in neurologic disease. J Clin Invest 2021; 131 (04) e143771
  • 98 Chng SH, Pachnis V. Enteric nervous system: lessons from neurogenesis for reverse engineering and disease modelling and treatment. Curr Opin Pharmacol 2020; 50: 100-106
  • 99 Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 2021; 18 (08) 571-587