Semin Neurol 2024; 44(03): 342-356
DOI: 10.1055/s-0044-1785504
Review Article

Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients

Jeffrey R. Vitt
1   Department of Neurological Surgery, UC Davis Medical Center, Sacramento, California
,
Shraddha Mainali
2   Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
› Author Affiliations

Abstract

The utilization of Artificial Intelligence (AI) and Machine Learning (ML) is paving the way for significant strides in patient diagnosis, treatment, and prognostication in neurocritical care. These technologies offer the potential to unravel complex patterns within vast datasets ranging from vast clinical data and EEG (electroencephalogram) readings to advanced cerebral imaging facilitating a more nuanced understanding of patient conditions. Despite their promise, the implementation of AI and ML faces substantial hurdles. Historical biases within training data, the challenge of interpreting multifaceted data streams, and the “black box” nature of ML algorithms present barriers to widespread clinical adoption. Moreover, ethical considerations around data privacy and the need for transparent, explainable models remain paramount to ensure trust and efficacy in clinical decision-making.

This article reflects on the emergence of AI and ML as integral tools in neurocritical care, discussing their roles from the perspective of both their scientific promise and the associated challenges. We underscore the importance of extensive validation in diverse clinical settings to ensure the generalizability of ML models, particularly considering their potential to inform critical medical decisions such as withdrawal of life-sustaining therapies. Advancement in computational capabilities is essential for implementing ML in clinical settings, allowing for real-time analysis and decision support at the point of care. As AI and ML are poised to become commonplace in clinical practice, it is incumbent upon health care professionals to understand and oversee these technologies, ensuring they adhere to the highest safety standards and contribute to the realization of personalized medicine. This engagement will be pivotal in integrating AI and ML into patient care, optimizing outcomes in neurocritical care through informed and data-driven decision-making.



Publication History

Article published online:
03 April 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Karagianni MD, Brotis AG, Gatos C. et al. Neuromonitoring in severe traumatic brain injury: a bibliometric analysis. Neurocrit Care 2022; 36 (03) 1044-1052
  • 2 Le Roux P, Menon DK, Citerio G. et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 (Suppl. 02) S1-S26
  • 3 Petkus V, Preiksaitis A, Chaleckas E. et al. Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury. J Neurotrauma 2020; 37 (02) 389-396
  • 4 Tas J, Beqiri E, van Kaam RC. et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): a feasibility randomized controlled clinical trial. J Neurotrauma 2021; 38 (20) 2790-2800
  • 5 Snider SB, Bodien YG, Bianciardi M, Brown EN, Wu O, Edlow BL. Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology 2019; 93 (13) e1281-e1287
  • 6 Threlkeld ZD, Bodien YG, Rosenthal ES. et al. Functional networks reemerge during recovery of consciousness after acute severe traumatic brain injury. Cortex 2018; 106: 299-308
  • 7 Stamova B, Ander BP, Jickling G. et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab 2019; 39 (09) 1818-1835
  • 8 Xu H, Stamova B, Ander BP. et al. mRNA expression profiles from whole blood associated with vasospasm in patients with subarachnoid hemorrhage. Neurocrit Care 2020; 33 (01) 82-89
  • 9 Hoiland RL, Rikhraj KJK, Thiara S. et al. Neurologic prognostication after cardiac arrest using brain biomarkers: a systematic review and meta-analysis. JAMA Neurol 2022; 79 (04) 390-398
  • 10 Halford GS, Baker R, McCredden JE, Bain JD. How many variables can humans process?. Psychol Sci 2005; 16 (01) 70-76
  • 11 Gobet F, Clarkson G. Chunks in expert memory: evidence for the magical number four ... or is it two?. Memory 2004; 12 (06) 732-747
  • 12 Winters B, Custer J, Galvagno Jr SM. et al. Diagnostic errors in the intensive care unit: a systematic review of autopsy studies. BMJ Qual Saf 2012; 21 (11) 894-902
  • 13 Shafer G, Gautham KS. Diagnostic error. Crit Care Clin 2022; 38 (01) 1-10
  • 14 Scott JB, De Vaux L, Dills C, Strickland SL. Mechanical ventilation alarms and alarm fatigue. Respir Care 2019; 64 (10) 1308-1313
  • 15 Seifert M, Tola DH, Thompson J, McGugan L, Smallheer B. Effect of bundle set interventions on physiologic alarms and alarm fatigue in an intensive care unit: a quality improvement project. Intensive Crit Care Nurs 2021; 67: 103098
  • 16 Storm J, Chen HC. The relationships among alarm fatigue, compassion fatigue, burnout and compassion satisfaction in critical care and step-down nurses. J Clin Nurs 2021; 30 (3-4): 443-453
  • 17 Buchanan BG. A (very) brief history of artificial intelligence. Ai Magazine 2005; ;15; 26 (04) 53
  • 18 MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021; 64 (04) 416-425
  • 19 Gutierrez G. Artificial intelligence in the intensive care unit. Crit Care 2020; 24 (01) 101
  • 20 Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015; 349 (6245): 255-260
  • 21 Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet 2019; 51 (01) 12-18
  • 22 Mainali S, Darsie ME, Smetana KS. Machine learning in action: stroke diagnosis and outcome prediction. Front Neurol 2021; 12: 734345
  • 23 Seymour CW, Kennedy JN, Wang S. et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 2019; 321 (20) 2003-2017
  • 24 Rush B, Celi LA, Stone DJ. Applying machine learning to continuously monitored physiological data. J Clin Monit Comput 2019; 33 (05) 887-893
  • 25 Chen L, Dubrawski A, Wang D. et al. Using supervised machine learning to classify real alerts and artifact in online multisignal vital sign monitoring data. Crit Care Med 2016; 44 (07) e456-e463
  • 26 Nagaraj SB, Biswal S, Boyle EJ. et al. Patient-specific classification of ICU sedation levels from heart rate variability. Crit Care Med 2017; 45 (07) e683-e690
  • 27 Hsieh MH, Hsieh MJ, Chen CM, Hsieh CC, Chao CM, Lai CC. An Artificial neural network model for predicting successful extubation in intensive care units. J Clin Med 2018; 7 (09) 240
  • 28 Parreco J, Hidalgo A, Parks JJ, Kozol R, Rattan R. Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement. J Surg Res 2018; 228: 179-187
  • 29 Li F, Xin H, Zhang J, Fu M, Zhou J, Lian Z. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database. BMJ Open 2021; 11 (07) e044779
  • 30 Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit Care Med 2018; 46 (04) 547-553
  • 31 Shimabukuro DW, Barton CW, Feldman MD, Mataraso SJ, Das R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir Res 2017; 4 (01) e000234
  • 32 Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14: 1155986
  • 33 Åkerlund CA, Donnelly J, Zeiler FA. et al; CENTER-TBI High Resolution ICU Sub-Study Participants and Investigators. Impact of duration and magnitude of raised intracranial pressure on outcome after severe traumatic brain injury: a CENTER-TBI high-resolution group study. PLoS One 2020; 15 (12) e0243427
  • 34 Güiza F, Depreitere B, Piper I. et al. Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive Care Med 2015; 41 (06) 1067-1076
  • 35 Aries MJH, Czosnyka M, Budohoski KP. et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med 2012; 40 (08) 2456-2463
  • 36 Güiza F, Meyfroidt G, Piper I. et al. Cerebral perfusion pressure insults and associations with outcome in adult traumatic brain injury. J Neurotrauma 2017; 34 (16) 2425-2431
  • 37 Goostrey K, Muehlschlegel S. Prognostication and shared decision making in neurocritical care. BMJ 2022; 377: e060154
  • 38 James SL, Theadom A, Ellenbogen RG. et al; GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18 (01) 56-87
  • 39 Zaloshnja E, Miller T, Langlois JA, Selassie AW. Prevalence of long-term disability from traumatic brain injury in the civilian population of the United States, 2005. J Head Trauma Rehabil 2008; 23 (06) 394-400
  • 40 Wang J, Yin MJ, Wen HC. Prediction performance of the machine learning model in predicting mortality risk in patients with traumatic brain injuries: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2023; 23 (01) 142
  • 41 Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak 2006; 6 (01) 38
  • 42 Courville E, Kazim SF, Vellek J. et al. Machine learning algorithms for predicting outcomes of traumatic brain injury: a systematic review and meta-analysis. Surg Neurol Int 2023; 14: 262
  • 43 Bruschetta R, Tartarisco G, Lucca LF. et al. Predicting outcome of traumatic brain injury: is machine learning the best way?. Biomedicines 2022; 10 (03) 686
  • 44 Pease M, Arefan D, Barber J. et al; TRACK-TBI Investigators. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans. Radiology 2022; 304 (02) 385-394
  • 45 Lee SH, Lee CH, Hwang SH, Kang DH. A machine learning-based prognostic model for the prediction of early death after traumatic brain injury: comparison with the Corticosteroid Randomization After Significant Head Injury (CRASH) model. World Neurosurg 2022; 166: e125-e134
  • 46 Amorim RL, Oliveira LM, Malbouisson LM. et al. Prediction of early TBI mortality using a machine learning approach in a LMIC population. Front Neurol 2020; 10: 1366
  • 47 Raj R, Wennervirta JM, Tjerkaski J. et al. Dynamic prediction of mortality after traumatic brain injury using a machine learning algorithm. NPJ Digit Med 2022; 5 (01) 96
  • 48 Raj R, Luostarinen T, Pursiainen E. et al. Machine learning-based dynamic mortality prediction after traumatic brain injury. Sci Rep 2019; 9 (01) 17672
  • 49 Hanko M, Grendár M, Snopko P. et al. Random forest-based prediction of outcome and mortality in patients with traumatic brain injury undergoing primary decompressive craniectomy. World Neurosurg 2021; 148: e450-e458
  • 50 Azad TD, Shah PP, Kim HB, Stevens RD. Endotypes and the path to precision in moderate and severe traumatic brain injury. Neurocrit Care 2022; 37 (Suppl. 02) 259-266
  • 51 Folweiler KA, Sandsmark DK, Diaz-Arrastia R, Cohen AS, Masino AJ. Unsupervised machine learning reveals novel traumatic brain injury patient phenotypes with distinct acute injury profiles and long-term outcomes. J Neurotrauma 2020; 37 (12) 1431-1444
  • 52 Åkerlund CAI, Holst A, Stocchetti N. et al; CENTER-TBI Participants and Investigators. Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study. Crit Care 2022; 26 (01) 228
  • 53 Carney N, Totten AM, O'Reilly C. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017; 80 (01) 6-15
  • 54 Balestreri M, Czosnyka M, Hutchinson P. et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care 2006; 4 (01) 8-13
  • 55 Sorrentino E, Diedler J, Kasprowicz M. et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit Care 2012; 16 (02) 258-266
  • 56 Lee SB, Kim H, Kim YT. et al. Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. J Neurosurg 2019; 132 (06) 1952-1960
  • 57 Megjhani M, Alkhachroum A, Terilli K. et al. An active learning framework for enhancing identification of non-artifactual intracranial pressure waveforms. Physiol Meas 2019; 40 (01) 015002
  • 58 Güiza F, Depreitere B, Piper I. et al. Early detection of increased intracranial pressure episodes in traumatic brain injury: external validation in an adult and in a pediatric cohort. Crit Care Med 2017; 45 (03) e316-e320
  • 59 Petrov D, Miranda SP, Balu R. et al. Prediction of intracranial pressure crises after severe traumatic brain injury using machine learning algorithms. J Neurosurg 2023; 139 (02) 528-535
  • 60 Schweingruber N, Mader MMD, Wiehe A. et al. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain 2022; 145 (08) 2910-2919
  • 61 Toh EMS, Yan B, Lim IC. et al. The role of intracranial pressure variability as a predictor of intracranial hypertension and mortality in critically ill patients. J Neurosurg 2023; 139 (06) 1534-1541
  • 62 Lazaridis C, Ajith A, Mansour A, Okonkwo DO, Diaz-Arrastia R, Mayampurath A. Prediction of intracranial hypertension and brain tissue hypoxia utilizing high-resolution data from the BOOST-II clinical trial. Neurotrauma Rep 2022; 3 (01) 473-478
  • 63 Meyfroidt G, Bouzat P, Casaer MP. et al. Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Med 2022; 48 (06) 649-666
  • 64 Lee HJ, Kim H, Kim YT, Won K, Czosnyka M, Kim DJ. Prediction of life-threatening intracranial hypertension during the acute phase of traumatic brain injury using machine learning. IEEE J Biomed Health Inform 2021; 25 (10) 3967-3976
  • 65 Carra G, Güiza F, Piper I. et al; CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators. Development and external validation of a machine learning model for the early prediction of doses of harmful intracranial pressure in patients with severe traumatic brain injury. J Neurotrauma 2023; 40 (5–6): 514-522
  • 66 Uryga A, Ziółkowski A, Kazimierska A. et al; CENTER-TBI High-Resolution ICU (HR ICU) Sub-Study Participants and Investigators, CENTER-TBI High-Resolution Sub-Study Participants and Investigators. Analysis of intracranial pressure pulse waveform in traumatic brain injury patients: a CENTER-TBI study. J Neurosurg 2022; 139 (01) 201-211
  • 67 Mataczynski C, Kazimierska A, Uryga A, Burzynska M, Rusiecki A, Kasprowicz M. End-to-end automatic morphological classification of intracranial pressure pulse waveforms using deep learning. IEEE J Biomed Health Inform 2022; 26 (02) 494-504
  • 68 Zhang X, Medow JE, Iskandar BJ. et al. Invasive and noninvasive means of measuring intracranial pressure: a review. Physiol Meas 2017; 38 (08) R143-R182
  • 69 Cardim D, Robba C, Bohdanowicz M. et al. Non-invasive monitoring of intracranial pressure using transcranial Doppler ultrasonography: is it possible?. Neurocrit Care 2016; 25 (03) 473-491
  • 70 Megjhani M, Terilli K, Weinerman B. et al. A deep learning framework for deriving noninvasive intracranial pressure waveforms from transcranial Doppler. Ann Neurol 2023; 94 (01) 196-202
  • 71 Miyagawa T, Sasaki M, Yamaura A. Intracranial pressure based decision making: prediction of suspected increased intracranial pressure with machine learning. PLoS One 2020; 15 (10) e0240845
  • 72 Relander FAJ, Ruesch A, Yang J. et al. Using near-infrared spectroscopy and a random forest regressor to estimate intracranial pressure. Neurophotonics 2022; 9 (04) 045001
  • 73 Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ 2020; 368: l6983
  • 74 Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020; 12 (02) 156-164
  • 75 Mokli Y, Pfaff J, Dos Santos DP, Herweh C, Nagel S. Computer-aided imaging analysis in acute ischemic stroke - background and clinical applications. Neurol Res Pract 2019; 1 (01) 23
  • 76 Feng R, Badgeley M, Mocco J, Oermann EK. Deep learning guided stroke management: a review of clinical applications. J Neurointerv Surg 2018; 10 (04) 358-362
  • 77 Sheth SA, Giancardo L, Colasurdo M, Srinivasan VM, Niktabe A, Kan P. Machine learning and acute stroke imaging. J Neurointerv Surg 2023; 15 (02) 195-199
  • 78 Wardlaw JM, Mielke O. Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment–systematic review. Radiology 2005; 235 (02) 444-453
  • 79 Peng SJ, Chen YW, Yang JY, Wang KW, Tsai JZ. Automated cerebral infarct detection on computed tomography images based on deep learning. Biomedicines 2022; 10 (01) 122
  • 80 Sahoo PK, Mohapatra S, Wu CY, Huang KL, Chang TY, Lee TH. Automatic identification of early ischemic lesions on non-contrast CT with deep learning approach. Sci Rep 2022; 12 (01) 18054
  • 81 Öman O, Mäkelä T, Salli E, Savolainen S, Kangasniemi M. 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur Radiol Exp 2019; 3 (01) 8
  • 82 Thomalla G, Simonsen CZ, Boutitie F. et al; WAKE-UP Investigators. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med 2018; 379 (07) 611-622
  • 83 Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A machine learning approach for classifying ischemic stroke onset time from imaging. IEEE Trans Med Imaging 2019; 38 (07) 1666-1676
  • 84 Zhu H, Jiang L, Zhang H, Luo L, Chen Y, Chen Y. An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. Neuroimage Clin 2021; 31: 102744
  • 85 Lee H, Lee EJ, Ham S. et al. Machine learning approach to identify stroke within 4.5 hours. Stroke 2020; 51 (03) 860-866
  • 86 Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Front Neurol 2017; 8: 651
  • 87 Rennert RC, Wali AR, Steinberg JA. et al. Epidemiology, natural history, and clinical presentation of large vessel ischemic stroke. Neurosurgery 2019; 85 (Suppl. 01) S4-S8
  • 88 Katsanos AH, Malhotra K, Goyal N. et al. Mortality risk in acute ischemic stroke patients with large vessel occlusion treated with mechanical thrombectomy. J Am Heart Assoc 2019; 8 (21) e014425
  • 89 Chen Z, Zhang R, Xu F. et al. Novel prehospital prediction model of large vessel occlusion using artificial neural network. Front Aging Neurosci 2018; 10: 181
  • 90 Yahav-Dovrat A, Saban M, Merhav G. et al. Evaluation of artificial intelligence-powered identification of large-vessel occlusions in a comprehensive stroke center. AJNR Am J Neuroradiol 2021; 42 (02) 247-254
  • 91 Stib MT, Vasquez J, Dong MP. et al. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network. Radiology 2020; 297 (03) 640-649
  • 92 Chung JW, Kim YC, Cha J. et al. Characterization of clot composition in acute cerebral infarct using machine learning techniques. Ann Clin Transl Neurol 2019; 6 (04) 739-747
  • 93 Garcia-Esperon C, Soderhjelm Dinkelspiel F, Miteff F. et al; Northern NSW Telestroke investigators. Implementation of multimodal computed tomography in a telestroke network: five-year experience. CNS Neurosci Ther 2020; 26 (03) 367-373
  • 94 Hokkinen L, Mäkelä T, Savolainen S, Kangasniemi M. Evaluation of a CTA-based convolutional neural network for infarct volume prediction in anterior cerebral circulation ischaemic stroke. Eur Radiol Exp 2021; 5 (01) 25
  • 95 Wang C, Shi Z, Yang M. et al. Deep learning-based identification of acute ischemic core and deficit from non-contrast CT and CTA. J Cereb Blood Flow Metab 2021; 41 (11) 3028-3038
  • 96 Chiang PL, Lin SY, Chen MH. et al. Deep learning-based automatic detection of ASPECTS in acute ischemic stroke: improving stroke assessment on CT scans. J Clin Med 2022; 11 (17) 5159
  • 97 Strbian D, Engelter S, Michel P. et al. Symptomatic intracranial hemorrhage after stroke thrombolysis: the SEDAN score. Ann Neurol 2012; 71 (05) 634-641
  • 98 Bentley P, Ganesalingam J, Carlton Jones AL. et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014; 4: 635-640
  • 99 Shao H, Chan WCL, Du H, Chen XF, Ma Q, Shao Z. A new machine learning algorithm with high interpretability for improving the safety and efficiency of thrombolysis for stroke patients: A hospital-based pilot study. Digit Health 2023; 9: 20 552076221149528
  • 100 Liu J, Chen X, Guo X, Xu R, Wang Y, Liu M. Machine learning prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis: a cross-cultural validation in Caucasian and Han Chinese cohort. Ther Adv Neurol Disord 2022; 15: 17 562864221129380
  • 101 Meng X, Ji J. Infarct volume and outcome of cerebral ischaemia, a systematic review and meta-analysis. Int J Clin Pract 2021; 75 (11) e14773
  • 102 Nielsen A, Hansen MB, Tietze A, Mouridsen K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 2018; 49 (06) 1394-1401
  • 103 Foroushani HM, Hamzehloo A, Kumar A. et al. Quantitative serial CT imaging-derived features improve prediction of malignant cerebral edema after ischemic stroke. Neurocrit Care 2020; 33 (03) 785-792
  • 104 Chen Y, Dhar R, Heitsch L. et al. Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. Neuroimage Clin 2016; 12: 673-680
  • 105 Dhar R, Chen Y, An H, Lee JM. Application of machine learning to automated analysis of cerebral edema in large cohorts of ischemic stroke patients. Front Neurol 2018; 9: 687
  • 106 Scrutinio D, Ricciardi C, Donisi L. et al. Machine learning to predict mortality after rehabilitation among patients with severe stroke. Sci Rep 2020; 10 (01) 20127
  • 107 Heo J, Yoon JG, Park H, Kim YD, Nam HS, Heo JH. Machine learning-based model for prediction of outcomes in acute stroke. Stroke 2019; 50 (05) 1263-1265
  • 108 Brugnara G, Neuberger U, Mahmutoglu MA. et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke 2020; 51 (12) 3541-3551
  • 109 Jo H, Kim C, Gwon D. et al. Combining clinical and imaging data for predicting functional outcomes after acute ischemic stroke: an automated machine learning approach. Sci Rep 2023; 13 (01) 16926
  • 110 Tozlu C, Edwards D, Boes A. et al. Machine learning methods predict individual upper-limb motor impairment following therapy in chronic stroke. Neurorehabil Neural Repair 2020; 34 (05) 428-439
  • 111 Sale P, Ferriero G, Ciabattoni L. et al. Predicting motor and cognitive improvement through machine learning algorithm in human subject that underwent a rehabilitation treatment in the early stage of stroke. J Stroke Cerebrovasc Dis 2018; 27 (11) 2962-2972
  • 112 Iwamoto Y, Imura T, Tanaka R. et al. Development and validation of machine learning-based prediction for dependence in the activities of daily living after stroke inpatient rehabilitation: a decision-tree analysis. J Stroke Cerebrovasc Dis 2020; 29 (12) 105332
  • 113 Fernando SM, Qureshi D, Talarico R. et al. Intracerebral hemorrhage incidence, mortality, and association with oral anticoagulation use: a population study. Stroke 2021; 52 (05) 1673-1681
  • 114 Tsao CW, Aday AW, Almarzooq ZI. et al. Heart Disease and Stroke Statistics-2022 Update: a report from the American Heart Association. Circulation 2022; 145 (08) e153-e639
  • 115 Bai C, Hao X, Zhou L. et al. Machine learning-based identification of the novel circRNAs circERBB2 and circCHST12 as potential biomarkers of intracerebral hemorrhage. Front Neurosci 2022; 16: 1002590
  • 116 Greenberg SM, Ziai WC, Cordonnier C. et al; American Heart Association/American Stroke Association. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 2022; 53 (07) e282-e361
  • 117 Altuve M, Pérez A. Intracerebral hemorrhage detection on computed tomography images using a residual neural network. Phys Med 2022; 99: 113-119
  • 118 Sharrock MF, Mould WA, Ali H. et al. 3D deep neural network segmentation of intracerebral hemorrhage: development and validation for clinical trials. Neuroinformatics 2021; 19 (03) 403-415
  • 119 Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ. et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med 2018; 1 (01) 9
  • 120 Sage A, Badura P. Intracranial hemorrhage detection in head CT using double-branch convolutional neural network, support vector machine, and random forest. Appl Sci (Basel) 2020; 10 (21) 7577
  • 121 Ko H, Chung H, Lee H, Lee J. Feasible Study on Intracranial Hemorrhage Detection and Classification using a CNN-LSTM Network. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020. ;2020: 1290-1293
  • 122 Ye H, Gao F, Yin Y. et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur Radiol 2019; 29 (11) 6191-6201
  • 123 Delcourt C, Carcel C, Zheng D. et al; INTERACT2 Investigators. Comparison of ABC methods with computerized estimates of intracerebral hemorrhage volume: the INTERACT2 study. Cerebrovasc Dis Extra 2019; 9 (03) 148-154
  • 124 Arab A, Chinda B, Medvedev G. et al. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT. Sci Rep 2020; 10 (01) 19389
  • 125 Dhar R, Falcone GJ, Chen Y. et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke 2020; 51 (02) 648-651
  • 126 Li Z, You M, Long C. et al. Hematoma expansion in intracerebral hemorrhage: an update on prediction and treatment. Front Neurol 2020; 11: 702
  • 127 Hall AN, Weaver B, Liotta E. et al. Identifying modifiable predictors of patient outcomes after intracerebral hemorrhage with machine learning. Neurocrit Care 2021; 34 (01) 73-84
  • 128 Zhou H, Zhou Z, Song Z, Li X. Machine learning-based modified BAT score in predicting hematoma enlargement after spontaneous intracerebral hemorrhage. J Clin Neurosci 2021; 93: 206-212
  • 129 Liu J, Xu H, Chen Q. et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 2019; 43: 454-459
  • 130 Tanioka S, Yago T, Tanaka K. et al. Machine learning prediction of hematoma expansion in acute intracerebral hemorrhage. Sci Rep 2022; 12 (01) 12452
  • 131 Bo R, Xiong Z, Huang T, Liu L, Chen Z. Using radiomics and convolutional neural networks for the prediction of hematoma expansion after intracerebral hemorrhage. Int J Gen Med 2023; 16: 3393-3402
  • 132 Chen Y, Qin C, Chang J. et al. A machine learning approach for predicting perihematomal edema expansion in patients with intracerebral hemorrhage. Eur Radiol 2023; 33 (06) 4052-4062
  • 133 Qi X, Hu G, Sun H, Chen Z, Yang C. Machine learning-based perihematomal tissue features to predict clinical outcome after spontaneous intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2022; 31 (06) 106475
  • 134 Madhok DY, Vitt JR, MacIsaac D, Hsia RY, Kim AS, Hemphill JC. Early do-not-resuscitate orders and outcome after intracerebral hemorrhage. Neurocrit Care 2021; 34 (02) 492-499
  • 135 Bunney G, Murphy J, Colton K. et al. Predicting early seizures after intracerebral hemorrhage with machine learning. Neurocrit Care 2022; 37 (Suppl. 02) 322-327
  • 136 Zhu F, Pan Z, Tang Y. et al. Machine learning models predict coagulopathy in spontaneous intracerebral hemorrhage patients in ER. CNS Neurosci Ther 2021; 27 (01) 92-100
  • 137 Nawabi J, Kniep H, Elsayed S. et al. Imaging-based outcome prediction of acute intracerebral hemorrhage. Transl Stroke Res 2021; 12 (06) 958-967
  • 138 Wang HL, Hsu WY, Lee MH. et al. Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front Neurol 2019; 10: 910
  • 139 Xu X, Zhang J, Yang K, Wang Q, Chen X, Xu B. Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning. Brain Behav 2021; 11 (05) e02085
  • 140 Lim MJR, Quek RHC, Ng KJ. et al. Machine learning models prognosticate functional outcomes better than clinical scores in spontaneous intracerebral haemorrhage. J Stroke Cerebrovasc Dis 2022; 31 (02) 106234
  • 141 Katsuki M, Kakizawa Y, Nishikawa A, Yamamoto Y, Uchiyama T. Postsurgical functional outcome prediction model using deep learning framework (Prediction One, Sony Network Communications Inc.) for hypertensive intracerebral hemorrhage. Surg Neurol Int 2021; 12: 203
  • 142 Ratcliff JJ, Hall AJ, Porto E. et al. Early Minimally Invasive Removal of Intracerebral Hemorrhage (ENRICH): study protocol for a multi-centered two-arm randomized adaptive trial. Front Neurol 2023; 14: 1126958
  • 143 Al-Khindi T, Macdonald RL, Schweizer TA. Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 2010; 41 (08) e519-e536
  • 144 Schatlo B, Fung C, Stienen MN. et al. Incidence and outcome of aneurysmal subarachnoid hemorrhage: the Swiss Study on Subarachnoid Hemorrhage (Swiss SOS). Stroke 2021; 52 (01) 344-347
  • 145 Dengler NF, Madai VI, Unteroberdörster M. et al. Outcome prediction in aneurysmal subarachnoid hemorrhage: a comparison of machine learning methods and established clinico-radiological scores. Neurosurg Rev 2021; 44 (05) 2837-2846
  • 146 Wang H, Bothe TL, Deng C. et al. Comparison of prognostic models for functional outcome in aneurysmal subarachnoid hemorrhage based on machine learning. World Neurosurg 2023; 180 (Oct): e686-e699
  • 147 Wang R, Zhang J, Shan B, He M, Xu J. XGBoost machine learning algorithm for prediction of outcome in aneurysmal subarachnoid hemorrhage. Neuropsychiatr Dis Treat 2022; 18: 659-667
  • 148 Zafar SF, Postma EN, Biswal S. et al. Electronic health data predict outcomes after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2018; 28 (02) 184-193
  • 149 Yu D, Williams GW, Aguilar D. et al. Machine learning prediction of the adverse outcome for nontraumatic subarachnoid hemorrhage patients. Ann Clin Transl Neurol 2020; 7 (11) 2178-2185
  • 150 Rabinstein AA, Friedman JA, Weigand SD. et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 2004; 35 (08) 1862-1866
  • 151 Vergouwen MD, Etminan N, Ilodigwe D, Macdonald RL. Lower incidence of cerebral infarction correlates with improved functional outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2011; 31 (07) 1545-1553
  • 152 Santana LS, Diniz JB, Rabelo NN, Teixeira MJ, Figueiredo EG, Telles JP. Machine Learning Algorithms to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis. Neurocritical Care 2023:1-1
  • 153 de Jong G, Aquarius R, Sanaan B. et al. Prediction models in aneurysmal subarachnoid hemorrhage: forecasting clinical outcome with artificial intelligence. Neurosurgery 2021; 88 (05) E427-E434
  • 154 Hu P, Li Y, Liu Y. et al. Comparison of conventional logistic regression and machine learning methods for predicting delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a multicentric observational cohort study. Front Aging Neurosci 2022; 14: 857521
  • 155 Savarraj JPJ, Hergenroeder GW, Zhu L. et al. Machine learning to predict delayed cerebral ischemia and outcomes in subarachnoid hemorrhage. Neurology 2021; 96 (04) e553-e562
  • 156 Ramos LA, van der Steen WE, Sales Barros R. et al. Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Neurointerv Surg 2019; 11 (05) 497-502
  • 157 Chen HY, Elmer J, Zafar SF. et al. Combining transcranial Doppler and EEG data to predict delayed cerebral ischemia after subarachnoid hemorrhage. Neurology 2022; 98 (05) e459-e469
  • 158 Koch M, Acharjee A, Ament Z. et al. Machine learning-driven metabolomic evaluation of cerebrospinal fluid: insights into poor outcomes after aneurysmal subarachnoid hemorrhage. Neurosurgery 2021; 88 (05) 1003-1011
  • 159 Odenstedt Hergès H, Vithal R, El-Merhi A, Naredi S, Staron M, Block L. Machine learning analysis of heart rate variability to detect delayed cerebral ischemia in subarachnoid hemorrhage. Acta Neurol Scand 2022; 145 (02) 151-159
  • 160 Megjhani M, Terilli K, Weiss M. et al. Dynamic detection of delayed cerebral ischemia: a study in 3 centers. Stroke 2021; 52 (04) 1370-1379
  • 161 Alexopoulos G, Zhang J, Karampelas I. et al. Applied forecasting for delayed cerebral ischemia prediction post subarachnoid hemorrhage: Methodological fallacies. Inform Med Unlocked 2022; 28: 100817
  • 162 Taghavi RM, Zhu G, Wintermark M, Kuraitis GM, Sussman ES, Pulli B, Biniam B, Ostmeier S, Steinberg GK, Heit JJ. Prediction of delayed cerebral ischemia after cerebral aneurysm rupture using explainable machine learning approach. Interv Neuroradiol 2023. Doi: 15910199231170411 (Epub ahead of print)
  • 163 Nielsen N, Wetterslev J, Cronberg T. et al; TTM Trial Investigators. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013; 369 (23) 2197-2206
  • 164 Holgersson J, Meyer MAS, Dankiewicz J. et al. Hypothermic versus normothermic temperature control after cardiac arrest. NEJM Evid 2022; 1 (11) a2200137
  • 165 Kjaergaard J, Møller JE, Schmidt H. et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med 2022; 387 (16) 1456-1466
  • 166 Eastwood G, Nichol AD, Hodgson C. et al; TAME Study Investigators. Mild hypercapnia or normocapnia after out-of-hospital cardiac arrest. N Engl J Med 2023; 389 (01) 45-57
  • 167 Schmidt H, Kjaergaard J, Hassager C. et al. Oxygen targets in comatose survivors of cardiac arrest. N Engl J Med 2022; 387 (16) 1467-1476
  • 168 Nishikimi M, Ogura T, Nishida K. et al. Outcome related to level of targeted temperature management in postcardiac arrest syndrome of low, moderate, and high severities: a nationwide multicenter prospective registry. Crit Care Med 2021; 49 (08) e741-e750
  • 169 Nutma S, Tjepkema-Cloostermans MC, Ruijter BJ. et al. Effects of targeted temperature management at 33 °C vs. 36 °C on comatose patients after cardiac arrest stratified by the severity of encephalopathy. Resuscitation 2022; 173: 147-153
  • 170 Elmer J, Coppler PJ, May TL. et al. Unsupervised learning of early post-arrest brain injury phenotypes. Resuscitation 2020; 153: 154-160
  • 171 Mansour A, Fuhrman JD, Ammar FE. et al. Machine learning for early detection of hypoxic-ischemic brain injury after cardiac arrest. Neurocrit Care 2022; 36 (03) 974-982
  • 172 Elmer J, Torres C, Aufderheide TP. et al; Resuscitation Outcomes Consortium. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation 2016; 102: 127-135
  • 173 Dale CM, Sinuff T, Morrison LJ, Golan E, Scales DC. Understanding early decisions to withdraw life-sustaining therapy in cardiac arrest survivors. a qualitative investigation. Ann Am Thorac Soc 2016; 13 (07) 1115-1122
  • 174 Seo DW, Yi H, Bae HJ. et al. Prediction of neurologically intact survival in cardiac arrest patients without pre-hospital return of spontaneous circulation: machine learning approach. J Clin Med 2021; 10 (05) 1089
  • 175 Johnsson J, Björnsson O, Andersson P. et al. Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care. Crit Care 2020; 24 (01) 474
  • 176 Chung CC, Chiu WT, Huang YH, Chan L, Hong CT, Chiu HW. Identifying prognostic factors and developing accurate outcome predictions for in-hospital cardiac arrest by using artificial neural networks. J Neurol Sci 2021; 425: 117445
  • 177 Kawai Y, Kogeichi Y, Yamamoto K, Miyazaki K, Asai H, Fukushima H. Explainable artificial intelligence-based prediction of poor neurological outcome from head computed tomography in the immediate post-resuscitation phase. Sci Rep 2023; 13 (01) 5759
  • 178 Silva S, Peran P, Kerhuel L. et al. Brain gray matter MRI morphometry for neuroprognostication after cardiac arrest. Crit Care Med 2017; 45 (08) e763-e771
  • 179 Westhall E, Rossetti AO, van Rootselaar AF. et al; TTM-trial investigators. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 2016; 86 (16) 1482-1490
  • 180 Tjepkema-Cloostermans MC, de Carvalho RCV, van Putten MJAM. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin Neurophysiol 2018; 129 (10) 2191-2196
  • 181 Jonas S, Rossetti AO, Oddo M, Jenni S, Favaro P, Zubler F. EEG-based outcome prediction after cardiac arrest with convolutional neural networks: Performance and visualization of discriminative features. Hum Brain Mapp 2019; 40 (16) 4606-4617
  • 182 Ghassemi MM, Amorim E, Alhanai T. et al; Critical Care Electroencephalogram Monitoring Research Consortium. Quantitative electroencephalogram trends predict recovery in hypoxic-ischemic encephalopathy. Crit Care Med 2019; 47 (10) 1416-1423
  • 183 Tjepkema-Cloostermans MC, da Silva Lourenço C, Ruijter BJ. et al. Outcome prediction in postanoxic coma with deep learning. Crit Care Med 2019; 47 (10) 1424-1432
  • 184 Zheng WL, Amorim E, Jing J. et al. Predicting neurological outcome from electroencephalogram dynamics in comatose patients after cardiac arrest with deep learning. IEEE Trans Biomed Eng 2022; 69 (05) 1813-1825
  • 185 Amorim E, van der Stoel M, Nagaraj SB. et al. Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury. Clin Neurophysiol 2019; 130 (10) 1908-1916
  • 186 Aellen FM, Alnes SL, Loosli F. et al. Auditory stimulation and deep learning predict awakening from coma after cardiac arrest. Brain 2023; 146 (02) 778-788
  • 187 Obermeyer Z, Emanuel EJ. Predicting the future - big data, machine learning, and clinical medicine. N Engl J Med 2016; 375 (13) 1216-1219
  • 188 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research 2014; 15 (01) 1929-1958
  • 189 Palmisciano P, Hoz SS, Johnson MD. et al. External validation of an extreme gradient boosting model for prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg 2023; 175: e108-e114
  • 190 Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med 2018; 378 (11) 981-983
  • 191 Mlodzinski E, Wardi G, Viglione C, Nemati S, Crotty Alexander L, Malhotra A. Assessing barriers to implementation of machine learning and artificial intelligence-based tools in critical care: web-based survey study. JMIR Perioper Med 2023; 6: e41056
  • 192 Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput Appl 2020; 32 (24) 18069-18083
  • 193 Price II WN, Cohen IG. Privacy in the age of medical big data. Nat Med 2019; 25 (01) 37-43
  • 194 Johnson AEW, Pollard TJ, Shen L. et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016; 3 (01) 160035
  • 195 Amorim E, Zheng WL, Ghassemi MM. et al. The International Cardiac Arrest Research Consortium Electroencephalography Database. Crit Care Med 2023; 51 (12) 1802-1811