Thromb Haemost 2003; 90(02): 185-193
DOI: 10.1160/TH03-02-0071
Review Article
Schattauer GmbH

Type II transmembrane serine proteases

Roman Szabo
1   Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
,
Qingyu Wu
2   Berlex Biosciences, Richmond, California, USA
,
Robert B. Dickson
3   Lombardi Cancer Center, Georgetown University Medical Center, Washington, District of Colombia, USA
,
Sarah Netzel-Arnett
4   Vascular Biology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, Maryland, USA
,
Toni M. Antalis
4   Vascular Biology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, Maryland, USA
,
Thomas H. Bugge
1   Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
› Author Affiliations
Further Information

Publication History

Received 03 February 2003

Accepted after revision 28 February 2003

Publication Date:
06 December 2017 (online)

Summary

The recent availability of human and mouse genome sequences and expressed sequence tag databases facilitated the identification of a large new family of membrane anchored serine proteases, the type II transmembrane serine proteases or TTSPs. Analyses of human inherited disorders and gene targeting studies in mice have revealed that several members of this new protease family have critical functions in development and health. Preliminary studies also suggest that aberrant expression of type II transmembrane serine proteases may be linked to disease progression. The knowledge gathered thus far of the genetics, physiology, and pathology of this interesting new serine protease family will be reviewed here in brief.

 
  • References

  • 1 Dano K, Andreasen PA, Grondahl-Hansen J, Kristensen P, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139-266.
  • 2 Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A. et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197-250.
  • 3 McCawley LJ, Matrisian LM. Matrix metal-loproteinases: multifunctional contributors to tumor progression. Mol Med Today 2000; 6: 149-56.
  • 4 Primakoff P, Myles DG. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 2000; 16: 83-7.
  • 5 Tang BL. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol 2001; 33: 33-44.
  • 6 Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 2000; 1477: 98-111.
  • 7 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 30: 10363-70.
  • 8 Hooper JD, Clements JA, Quigley JP, Antalis TM. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 2001; 276: 857-60.
  • 9 Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH. et al. Membrane anchored serine proteases: An emerging class of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 2003; 22: 237-58.
  • 10 Leytus SP, Loeb KR, Hagen FS, Kurachi K, Davie EW. A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepato-ma cells. Biochemistry 1988; 27: 1067-74.
  • 11 Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE. Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains. Proc Natl Acad Sci U S A 1994; 91: 7588-92.
  • 12 Yamaoka K, Masuda K, Ogawa H, Takagi K, Umemoto N, Yasuoka S. Cloning and characterization of the cDNA for human airway trypsin-like protease. J Biol Chem 1998; 273: 11895-901.
  • 13 Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 1997; 44: 309-20.
  • 14 Yan W, Sheng N, Seto M, Morser J, Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 1999; 274: 14926-35.
  • 15 Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C. et al. Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 1999; 49: 420-8.
  • 16 Lin CY, Anders J, Johnson M, Sang QA, Dickson RB. Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 1999; 274: 18231-6.
  • 17 Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A 1999; 96: 11054-61.
  • 18 Underwood LJ, Shigemasa K, Tanimoto H, Beard JB, Schneider EN, Wang Y. et al. Ovarian tumor cells express a novel multi-domain cell surface serine protease. Biochim Biophys Acta 2000; 1502: 337-50.
  • 19 Wallrapp C, Hahnel S, Muller-Pillasch F, Burghardt B, Iwamura T, Ruthenburger M. et al. A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res 2000; 60: 2602-6.
  • 20 Yamaguchi N, Okui A, Yamada T, Nakazato H, Mitsui S. Spinesin/TMPRSS5, a novel transmembrane serine protease, cloned from human spinal cord. J Biol Chem 2002; 277: 6806-12.
  • 21 Lang JC, Schuller DE. Differential expression of a novel serine protease homologue in squamous cell carcinoma of the head and neck. Br J Cancer 2001; 84: 237-43.
  • 22 Velasco G, Cal S, Quesada V, Sanchez LM, Lopez-Otin C. Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem 2002; 277: 37637-46.
  • 23 Pan J, Hinzmann B, Yan W, Wu F, Morser J, Wu Q. Genomic Structures of the Human and Murine Corin Genes and Functional GATA Elements in Their Promoters. J Biol Chem 2002; 277: 38390-8.
  • 24 Kim DR, Sharmin S, Inoue M, Kido H. Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung. Biochim Biophys Acta 2001; 1518: 204-9.
  • 25 Tsuji A, Torres-Rosado A, Arai T, Le Beau MM, Lemons RS, Chou SH. et al. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J Biol Chem 1991; 266: 16948-53.
  • 26 Rutgeerts L, Eggermont E. Human enterokinase. Tijdschr Gastroenterol 1976; 19: 231-46.
  • 27 Eggermont E, Molla AM, Tytgat G, Rutgeerts L. Distribution of enterokinase activity in the human intestine. Acta Gastroenterol Belg 1971; 34: 655-62.
  • 28 Maroux S, Baratti J, Desnuelle P. Purification and specificity of porcine enterokinase. J Biol Chem 1971; 246: 5031-9.
  • 29 Yuan X, Zheng X, Lu D, Rubin DC, Pung CY, Sadler JE. Structure of murine enterokinase (enteropeptidase) and expression in small intestine during development. Am J Physiol 1998; 274: G342-9.
  • 30 Holzinger A, Maier EM, Buck C, Mayerhofer PU, Kappler M, Haworth JC. et al. Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 2002; 70: 20-5.
  • 31 Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720-5.
  • 32 Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 2000; 275: 26333-42.
  • 33 Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R. et al. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet 2001; 27: 59-63.
  • 34 Ben-Yosef T, Wattenhofer M, Riazuddin S, Ahmed ZM, Scott HS, Kudoh J. et al. Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. J Med Genet 2001; 38: 396-400.
  • 35 Masmoudi S, Antonarakis SE, Schwede T, Ghorbel AM, Gratri M, Pappasavas MP. et al. Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Hum Mutat 2001; 18: 101-8.
  • 36 Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L. et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 2002; 11: 2829-36.
  • 37 Adachi M, Kitamura K, Miyoshi T, Narikiyo T, Iwashita K, Shiraishi N. et al. Activation of epithelial sodium channels by prostasin in Xenopus oocytes. J Am Soc Nephrol 2001; 12: 1114-21.
  • 38 Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC. et al. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 2002; 277: 8338-45.
  • 39 Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC. Synergistic activation of ENaC by three membrane-bound channel- activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes. J Gen Physiol 2002; 120: 191-201.
  • 40 Kazama Y, Hamamoto T, Foster DC, Kisiel W. Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem 1995; 270: 66-72.
  • 41 Torres-Rosado A, O'Shea KS, Tsuji A, Chou SH, Kurachi K. Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth. Proc Natl Acad Sci U S A 1993; 90: 7181-5.
  • 42 Vu TK, Liu RW, Haaksma CJ, Tomasek JJ, Howard EW. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem 1997; 272: 31315-20.
  • 43 Wu Q, Yu D, Post J, Halks-Miller M, Sadler JE, Morser J. Generation and characterization of mice deficient in hepsin, a hepatic trans-membrane serine protease. J Clin Invest 1998; 101: 321-6.
  • 44 Yu IS, Chen HJ, Lee YS, Huang PH, Lin SR, Tsai TW. et al. Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb Haemost 2000; 84: 865-70.
  • 45 Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihko PT. Expression of trans-membrane serine protease TMPRSS2 in mouse and human tissues. J Pathol 2001; 193: 134-40.
  • 46 Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD. et al. Prostate-localized and androgen-regulated expression of the membrane- bound serine protease TMPRSS2. Cancer Res 1999; 59: 4180-4.
  • 47 Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC. et al. Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 2001; 61: 1686-92.
  • 48 Hooper JD, Scarman AL, Clarke BE, Normyle JF, Antalis TM. Localization of the mosaic transmembrane serine protease corin to heart myocytes. Eur J Biochem 2000; 267: 6931-7.
  • 49 Yan W, Wu F, Morser J, Wu Q. Corin, a trans-membrane cardiac serine protease, acts as a proatrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 2000; 97: 8525-9.
  • 50 Wu F, Yan W, Pan J, Morser J, Wu Q. Processing of proatrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem 2002; 277: 16900-5.
  • 51 Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M. et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo . Am J Pathol 2001; 158: 1301-11.
  • 52 Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M. et al. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopatho-logical parameters. Clin Cancer Res 2002; 8: 1101-7.
  • 53 List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W. et al. Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 2002; 21: 3765-79.
  • 54 Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R. et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419-24.
  • 55 Damiano BP, Cheung WM, Santulli RJ, Fung-Leung WP, Ngo K, Ye RD. et al. Cardio-vascular responses mediated by protease-activated receptor-2 (PAR- 2) and thrombin receptor (PAR-1) are distinguished in mice deficient in PAR-2 or PAR-1. J Pharmacol Exp Ther 1999; 288: 671-8.
  • 56 Lindner JR, Kahn ML, Coughlin SR, Sambrano GR, Schauble E, Bernstein D. et al. Delayed onset of inflammation in protease-activated receptor-2- deficient mice. J Immunol 2000; 165: 6504-10.
  • 57 Lin CY, Anders J, Johnson M, Dickson RB. Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 1999; 274: 18237-42.
  • 58 Denda K, Shimomura T, Kawaguchi T, Miyazawa K, Kitamura N. Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J Biol Chem 2002; 277: 14053-9.
  • 59 Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin C-Y, Dickson RB. et al Tissue microarray analysis of HGF/met pathway components reveals a role for Met, matriptase, and HAI-1 in the progression of node-negative breast cancer. Cancer Research, in pres.
  • 60 Friedrich R, Fuentes-Prior P, Ong E, Coombs G, Hunter M, Oehler R. et al. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 2002; 277: 2160-8.
  • 61 Takahashi M, Sano T, Yamaoka K, Kamimura T, Umemoto N, Nishitani H. et al. Localization of human airway trypsinlike protease in the airway: an immunohistochemical study. Histochem Cell Biol 2001; 115: 181-7.
  • 62 Yoshinaga S, Nakahori Y, Yasuoka S. Fibrinogenolytic activity of a novel trypsinlike enzyme found in human airway. J Med Invest 1998; 45: 77-86.
  • 63 Mann NS, Mann SK. Enterokinase. Proc Soc Exp Biol Med 1994; 206: 114-8.
  • 64 Zacharski LR, Ornstein DL, Memoli VA, Rousseau SM, Kisiel W. Expression of the factor VII activating protease, hepsin, in situ in renal cell carcinoma. Thromb Haemost 1998; 79: 876-7.
  • 65 Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA. et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 2001; 61: 5692-6.
  • 66 Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 2001; 61: 4683-8.
  • 67 Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A. et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol 2002; 160: 2169-80.
  • 68 Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA. et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61: 5974-8.
  • 69 Neill GW, Kelsell DP. Spotting prostate cancer. Trends Mol Med 2001; 7: 432
  • 70 Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822-6.
  • 71 Srikantan V, Valladares M, Rhim JS, Moul JW, Srivastava S. HEPSIN Inhibits Cell Growth/ Invasion in Prostate Cancer Cells. Cancer Res 2002; 62: 6812-6.
  • 72 Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P. The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer 2001; 94: 705-10.
  • 73 Lin CY, Wang JK, Torri J, Dou L, Sang QA, Dickson RB. Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem 1997; 272: 9147-52.
  • 74 Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 1993; 53: 1409-15.
  • 75 Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ. Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 2001; 22: 104-14.
  • 76 Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K. et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6. GlcNAc branching. J Biol Chem 2002; 277: 16960-7.
  • 77 Jacquinet E, Rao NV, Rao GV, Hoidal JR. Cloning, genomic organization, chromosomal assignment and expression of a novel mosaic serine proteinase: epitheliasin. FEBS Lett 2000; 468: 93-100.
  • 78 Kitamoto Y, Veile RA, Donis-Keller H, Sadler JE. cDNA sequence and chromosomal localization of human enterokinase, the proteolytic activator of trypsinogen. Biochemistry 1995; 34: 4562-8.
  • 79 Benaud CM, Oberst M, Dickson RB, Lin CY. Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 2002; 19: 639-49.
  • 80 Hermon-Taylor J, Perrin J, Grant DA, Appleyard A, Bubel M, Magee AI. Immunofluorescent localisation of enterokinase in human small intestine. Gut 1977; 18: 259-65.
  • 81 Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T. A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 2001; 287: 995-1002.