Thromb Haemost 2003; 90(06): 993-1002
DOI: 10.1160/TH03-05-0328
Theme Issue Article
Schattauer GmbH

Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling

Boris Hinz
1   Laboratory of Cell Biophysics, Swiss Federal Institute of Technology, Lausanne, Switzerland
,
Giulio Gabbiani
2   Department of Pathology, Centre Medical Universitaire, University of Geneva, Geneva, Switzerland
› Author Affiliations
Financial support: This work was supported by the Swiss National Science Foundation, grant #31-61.336.00.
Further Information

Publication History

Received 30 May 2003

Accepted after revision 05 August 2003

Publication Date:
05 December 2017 (online)

Summary

It is presently accepted that fibroblast/myofibroblast modulation represents a crucial step in granulation tissue contraction and in the production of the connective tissue deformations typical of fibrocontractive diseases. In addition to synthesizing extracellular matrix (ECM) components, myofibroblasts can develop tensile force through the neoformation of α-smooth muscle actin (α-SMA) containing cytoplasmic stress fibers. Tension has been shown to be a crucial regulator of connective tissue remodeling. In order to coordinate tension distribution within connective tissue, cell-matrix and cell-cell contacts appear essential. This review addresses the formation, molecular structure and function of such structures that are characterized by their association with intracytoplasmic actin filaments. Actin associated cell-matrix adhesions appear to provide the interface between ECM components and intracellular stress fibers, thus contributing to the transmission of force to the substrate and to the detection of stress level in the matrix. Cell-cell adherens junctions appear to synchronize myofibro-blast contractile activity. Further studies investigating the functions of these structures will be important for the understanding of the mechanisms of granulation tissue evolution and for the planification of strategies in view of influencing connective tissue deformations.

 
  • References

  • 1 Serini G, Gabbiani G. Mechanisms of myo-fibroblast activity and phenotypic modulation. Exp Cell Res 1999; 250 (02) 273-83.
  • 2 Tomasek JJ, Gabbiani G, Hinz B. et al. Myo-fibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3 (05) 349-63.
  • 3 Skalli O, Ropraz P, Trzeciak A. et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986; 103 6 Pt 2 2787-96.
  • 4 Arora PD, McCulloch CA. Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 1994; 159 (01) 161-75.
  • 5 Hinz B, Celetta G, Tomasek JJ. et al. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001; 12 (09) 2730-41.
  • 6 Hinz B, Mastrangelo D, Iselin CE. et al. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 2001; 159 (03) 1009-20.
  • 7 Desmouliere A, Geinoz A, Gabbiani F. et al. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122 (01) 103-11.
  • 8 Ronnov-Jessen L, Petersen OW. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 1993; 68 (06) 696-707.
  • 9 Serini G, Bochaton-Piallat ML, Ropraz P. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 1998; 142 (03) 873-81.
  • 10 Muro AF, Chauhan AK, Gajovic S. et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 2003; 162 (01) 149-60.
  • 11 Arora PD, Narani N, McCulloch CA. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 1999; 154 (03) 871-82.
  • 12 Desmouliere A, Redard M, Darby I. et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146 (01) 56-66.
  • 13 Gabbiani G, Chaponnier C, Huttner I. Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 1978; 76 (03) 561-8.
  • 14 Dugina V, Fontao L, Chaponnier C. et al. Focal adhesion features during myofibroblas-tic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 2001; 114 Pt 18 3285-96.
  • 15 Gabbiani G, Rungger-Brandle E. Tissue Repair and Regeneration. In: Glynn LE, editor. Handbook of Inflammation. Amsterdam: Elsevier 1981; 1-50.
  • 16 Singer II, Kawka DW, Kazazis DM. et al. In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface. J Cell Biol 1984; 98 (06) 2091-106.
  • 17 Yamada KM, Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 1997; 9 (01) 76-85.
  • 18 Hynes RO. Cell adhesion: old and new questions. Trends Cell Biol 1999; 9 (12) M33-7.
  • 19 Tomasek JJ, Schultz RJ, Haaksma CJ. Extracellular matrix-cytoskeletal connections at the surface of the specialized contractile fibroblast (myofibroblast) in Dupuytren disease. J Bone Joint Surg [Am] 1987; 69 (09) 1400-7.
  • 20 Singer II.. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 1979; 16 (03) 675-85.
  • 21 Geiger B, Bershadsky A, Pankov R. et al. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2001; 2 (11) 793-805.
  • 22 Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 2000; 261 (01) 25-36.
  • 23 Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 2002; 14 (05) 633-9.
  • 24 Geiger B, Bershadsky A. Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 2001; 13 (05) 584-92.
  • 25 Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 1995; 81: 53-62.
  • 26 Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420 6916 629-35.
  • 27 Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol 2002; 159 (04) 695-705.
  • 28 Rottner K, Hall A, Small JV. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 1999; 9 (12) 640-8.
  • 29 Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70 (03) 389-99.
  • 30 Ballestrem C, Hinz B, Imhof BA. et al. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol 2001; 155 (07) 1319-32.
  • 31 Helfman DM, Levy ET, Berthier C. et al. Cal-desmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell 1999; 10 (10) 3097-112.
  • 32 Chrzanowska Wodnicka M, Burridge K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 1996; 133 (06) 1403-15.
  • 33 Kaverina I, Krylyshkina O, Small JV. Micro-tubule targeting of substrate contacts promotes their relaxation and dissociation. J Cell Biol 1999; 146 (05) 1033-44.
  • 34 Volberg T, Geiger B, Citi S. et al. Effect of protein kinase inhibitor H-7 on the contractility, integrity, and membrane anchorage of the microfilament system. Cell Motil Cytoskel 1994; 29 (04) 321-38.
  • 35 Riveline D, Zamir E, Balaban NQ. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 2001; 153 (06) 1175-86.
  • 36 Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 1997; 88 (01) 39-48.
  • 37 Suter DM, Errante LM, Belotserkovsky V. et al. The Ig superfamily cell adhesion molecule, ApCAM, mediates growth cone steering by substrate-cytoskeletal coupling. J Cell Biol 1998; 141: 227-40.
  • 38 Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons. J Cell Biol 2002; 156 (04) 609-15.
  • 39 Pelham Jr. RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 1997; 94 (25) 13661-5.
  • 40 Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003; 13 (05) 264-9.
  • 41 Tamariz E, Grinnell F. Modulation of Fibroblast Morphology and Adhesion during Collagen Matrix Remodeling. Mol Biol Cell 2002; 13 (11) 3915-29.
  • 42 Vaughan MB, Howard EW, Tomasek JJ. Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 2000; 257 (01) 180-9.
  • 43 Hinz B, Dugina V, Ballestrem C. et al. Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts.Mol Biol Cell. 2003 in press
  • 44 Hinz B, Gabbiani G, Chaponnier C. The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myo-fibroblast in vitro and in vivo. J Cell Biol 2002; 157 (04) 657-63.
  • 45 Zamir E, Katz BZ, Aota S. et al. Molecular diversity of cell-matrix adhesions. J Cell Sci 1999; 112 Pt 11 1655-69.
  • 46 Hinz B, Dugina V, Ballestrem C. et al. {alpha}-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 2003; 14 (06) 2508-19.
  • 47 Katz BZ, Zamir E, Bershadsky A. et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 2000; 11 (03) 1047-60.
  • 48 Zamir E, Katz M, Posen Y. et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000; 2 (04) 191-6.
  • 49 Cukierman E, Pankov R, Stevens DR. et al. Taking cell-matrix adhesions to the third dimension. Science 2001; 294 5547 1708-12.
  • 50 Zhong C, Chrzanowska-Wodnicka M, Brown J. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 1998; 141 (02) 539-51.
  • 51 Hynes RO. The dynamic dialogue between cells and matrices: implications of fibronectin’s elasticity. Proc Natl Acad Sci U S A 1999; 96 (06) 2588-90.
  • 52 Welch MP, Odland GF, Clark RA. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 1990; 110 (01) 133-45.
  • 53 Liao YF, Gotwals PJ, Koteliansky VE. et al. The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 2002; 277 (17) 14467-74.
  • 54 Wang A, Patrone L, McDonald JA. et al. Expression of the integrin subunit alpha 9 in the murine embryo. Dev Dyn 1995; 204 (04) 421-31.
  • 55 Ignotz RA, Massague J. Cell adhesion protein receptors as targets for transforming growth factor-beta action. Cell 1987; 51 (02) 189-97.
  • 56 Jester JV, Barry-Lane PA, Cavanagh HD. et al. Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea 1996; 15 (05) 505-16.
  • 57 Roberts CJ, Birkenmeier TM, McQuillan JJ. et al. Transforming growth factor beta stimulates the expression of fibronectin and of both subunits of the human fibronectin receptor by cultured human lung fibroblasts. J Biol Chem 1988; 263 (10) 4586-92.
  • 58 Thannickal VJ, Lee DY, White ES. et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003; 278 (14) 12384-9.
  • 59 Rout UK, Saed GM, Diamond MP. Transforming growth factor-beta1 modulates expression of adhesion and cytoskeletal proteins in human peritoneal fibroblasts. Fertil Steril 2002; 78 (01) 154-61.
  • 60 Osada K, Seishima M, Kitajima Y. et al. Decreased integrin alpha 2, but normal response to TGF-beta in scleroderma fibroblasts. J Dermatol Sci 1995; 9 (03) 169-75.
  • 61 Carver W, Molano I, Reaves TA. et al. Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 1995; 165 (02) 425-37.
  • 62 Klein CE, Dressel D, Steinmayer T. et al. Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J Cell Biol 1991; 115 (05) 1427-36.
  • 63 Schiro JA, Chan BM, Roswit WT. et al. Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 1991; 67 (02) 403-10.
  • 64 Cooke ME, Sakai T, Mosher DF. Contraction of collagen matrices mediated by alpha2 beta1A and alpha(v)beta3 integrins. J Cell Sci 2000; 113 Pt 13 2375-83.
  • 65 Langholz O, Rockel D, Mauch C. et al. Collagen and collagenase gene expression in three-dimensional collagen lattices are differentially regulated by alpha 1 beta 1 and alpha 2 beta 1 integrins. J Cell Biol 1995; 131 6 Pt 2 1903-15.
  • 66 Tiger CF, Fougerousse F, Grundstrom G. et al. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol 2001; 237 (01) 116-29.
  • 67 Balaban NQ, Schwarz US, Riveline D. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropat-terned substrates. Nat Cell Biol 2001; 3 (05) 466-72.
  • 68 Tan JL, Tien J, Pirone DM. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 2003; 100 (04) 1484-9.
  • 69 Dugina V, Alexandrova A, Chaponnier C. et al. Rat fibroblasts cultured from various organs exhibit differences in alpha-smooth muscle actin expression, cytoskeletal pattern, and adhesive structure organization. Exp Cell Res 1998; 238 (02) 481-90.
  • 70 Huttenlocher A, Sandborg RR, Horwitz AF. Adhesion and cell migration. Curr Opin Cell Biol 1995; 7: 697-706.
  • 71 DiMilla PA, Barbee K, Lauffenburger DA. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 1991; 60: 15-37.
  • 72 Pelham Jr. RJ, Wang Y. High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 1999; 10 (04) 935-45.
  • 73 Beningo KA, Dembo M, Kaverina I. et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 2001; 153 (04) 881-8.
  • 74 Smilenov LB, Mikhailov A, Pelham RJ. et al. Focal adhesion motility revealed in stationary fibroblasts [In Process Citation]. Science 1999; 286 5442 1172-4.
  • 75 Burridge K, Fath K, Kelly T. et al. Focal adhesions: transmembrane junction between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988; 4: 487-525.
  • 76 Ronnov Jessen L, Petersen OW. A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 1996; 134 (01) 67-80.
  • 77 Schoenwaelder SM, Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999; 11 (02) 274-86.
  • 78 Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 2000; 275 (30) 22607-10.
  • 79 Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002; 2002 (119) PE6.
  • 80 Grinnell F, Ho CH, Lin YC. et al. Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 1999; 274 (02) 918-23.
  • 81 Brown RA, Prajapati R, McGrouther DA. et al. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 1998; 175 (03) 323-32.
  • 82 Miao H, Li S, Hu YL. et al. Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci 2002; 115 Pt 10 2199-206.
  • 83 Scaffidi AK, Moodley YP, Weichselbaum M. et al. Regulation of human lung fibroblast phenotype and function by vitronectin and vitronectin integrins. J Cell Sci 2001; 114 Pt 19 3507-16.
  • 84 Eckes B, Zigrino P, Kessler D. et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol 2000; 19 (04) 325-32.
  • 85 Saharinen J, Hyytiainen M, Taipale J. et al. Latent transforming growth factor-beta binding proteins (LTBPs) – structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 1999; 10 (02) 99-117.
  • 86 Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003; 116 Pt 2 217-24.
  • 87 Schoppet M, Chavakis T, Al-Fakhri N. et al. Molecular interactions and functional interference between vitronectin and transforming growth factor-beta. Lab Invest 2002; 82 (01) 37-46.
  • 88 Taipale J, Miyazono K, Heldin CH. et al. Latent transforming growth factor-beta 1 associates to fibroblast extracellular matrix via latent TGF-beta binding protein. J Cell Biol 1994; 124 1-2 171-81.
  • 89 Mangasser-Stephan K, Gartung C, Lahme B. et al. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001; 21 (02) 105-13.
  • 90 Munger JS, Huang X, Kawakatsu H. et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96 (03) 319-28.
  • 91 Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at ad-herens junctions. Cell 2003; 112 (04) 535-48.
  • 92 Dejana E, Bazzoni G, Lampugnani MG. Vascular endothelial (VE)-cadherin: only an intercellular glue? [In Process Citation]. Exp Cell Res 1999; 252 (01) 13-9.
  • 93 Conacci-Sorrell M, Zhurinsky J, Ben-Ze’ev A. The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 2002; 109 (08) 987-91.
  • 94 Fukata M, Kaibuchi K. Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2001; 2 (12) 887-97.
  • 95 Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol 2000; 148 (03) 399-404.
  • 96 Guthrie S. Neuronal development: sorting out motor neurons. Curr Biol 2002; 12 (14) R488-90.
  • 97 Goda Y. Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals. Neuron 2002; 35 (01) 1-3.
  • 98 Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol 2001; 13 (05) 600-3.
  • 99 Angst BD, Marcozzi C, Magee I A. The cadherin superfamily: diversity in form and function. J Cell Sci 2001; 114 Pt 4 629-41.
  • 100 Blaschuk OW, Sullivan R, David S. et al. Identification of a cadherin cell adhesion recognition sequence. Dev Biol 1990; 139 (01) 227-9.
  • 101 Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299 (03) 551-72.
  • 102 Shan WS, Tanaka H, Phillips GR. et al. Functional cis-heterodimers of N- and R-cad-herins. J Cell Biol 2000; 148 (03) 579-90.
  • 103 Brieher WM, Yap AS, Gumbiner BM. Lateral dimerization is required for the homophilic binding activity of C-catenin. J Cell Biol 1996; 135: 487-96.
  • 104 Nose A, Tsuji K, Takeichi M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 1990; 61 (01) 147-55.
  • 105 Leckband D, Sivasankar S. Mechanism of homophilic cadherin adhesion. Curr Opin Cell Biol 2000; 12 (05) 587-92.
  • 106 Volk T, Cohen O, Geiger B. Formation of heterotypic adherens-type junctions between L-CAM-containing liver cells and A-CAM-containing lens cells. Cell 1987; 50 (06) 987-94.
  • 107 Omelchenko T, Fetisova E, Ivanova O. et al. Contact interactions between epitheliocytes and fibroblasts: formation of heterotypic cadherin-containing adhesion sites is accompanied by local cytoskeletal reorganization. Proc Natl Acad Sci U S A 2001; 98 (15) 8632-7.
  • 108 Shimoyama Y, Tsujimoto G, Kitajima M. et al. Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 2000; 349 Pt 1 159-67.
  • 109 Geiger B, Volberg T, Ginsberg D. et al. Broad spectrum pan-cadherin antibodies, reactive with the C-terminal 24 amino acid residues of N-cadherin. J Cell Sci 1990; 97 Pt 4 607-14.
  • 110 Hatta K, Takeichi M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 1986; 320 6061 447-9.
  • 111 Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 2001; 52 (03) 372-86.
  • 112 Hurst I V, Goldberg PL, Minnear FL. et al. Rearrangement of adherens junctions by transforming growth factor-beta1: role of contraction. Am J Physiol 1999; 276 4 Pt 1 L582-95.
  • 113 Bhowmick NA, Ghiassi M, Bakin A. et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12 (01) 27-36.
  • 114 Petridou S, Masur SK. Immunodetection of connexins and cadherins in corneal fibroblasts and myofibroblasts. Invest Ophthalmol Vis Sci 1996; 37 (09) 1740-8.
  • 115 Lackie JM. Cell movement and cell behaviour: Allen & Unwin Ltd. 1986
  • 116 Holley RW, Kiernan JA. “Contact inhibition” of cell division in 3T3 cells. Proc Natl Acad Sci U S A 1968; 60 (01) 300-4.
  • 117 Salomon D, Saurat JH, Meda P. Cell-to-cell communication within intact human skin. J Clin Invest 1988; 82 (01) 248-54.
  • 118 Spanakis SG, Petridou S, Masur SK. Functional gap junctions in corneal fibro- blasts and myofibroblasts. Invest Ophthalmol Vis Sci 1998; 39 (08) 1320-8.
  • 119 Ko KS, Arora PD, McCulloch CA. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem 2001; 276 (38) 35967-77.
  • 120 Parizi M, Howard EW, Tomasek JJ. Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 2000; 254 (02) 210-20.
  • 121 Adams CL, Nelson WJ. Cytomechanics of cadherin-mediated cell-cell adhesion. Curr Opin Cell Biol 1998; 10 (05) 572-7.
  • 122 Martin P, Lewis J. Actin cable and epidermal movement in embryonic wound healing. Nature 1992; 360: 179-83.
  • 123 Yonemura S, Itoh M, Nagafuchi A. et al. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 1995; 108 Pt 1 127-42.
  • 124 Ragsdale GK, Phelps J, Luby-Phelps K. Viscoelastic response of fibroblasts to tension transmitted through adherens junctions. Biophys J 1997; 73 (05) 2798-808.
  • 125 Braga V. Epithelial cell shape: cadherins and small GTPases. Exp Cell Res 2000; 261 (01) 83-90.
  • 126 Gloushankova NA, Krendel MF, Alieva NO. et al. Dynamics of contacts between lamellae of fibroblasts: essential role of the actin cyto-skeleton. Proc Natl Acad Sci U S A 1998; 95 (08) 4362-7.
  • 127 Noren NK, Niessen CM, Gumbiner BM. et al. Cadherin engagement regulates Rho family GTPases. J Biol Chem 2001; 276 (36) 33305-8.
  • 128 Yap AS, Kovacs EM. Direct cadherin-activated cell signaling: a view from the plasma membrane. J Cell Biol 2003; 160 (01) 11-6.
  • 129 Masur SK, Dewal HS, Dinh TT. et al. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc Natl Acad Sci U S A 1996; 93 (09) 4219-23.
  • 130 Petridou S, Maltseva O, Spanakis S. et al. TGF-beta receptor expression and smad2 localization are cell density dependent in fibroblasts. Invest Ophthalmol Vis Sci 2000; 41 (01) 89-95.
  • 131 Braga VM, Machesky LM, Hall A. et al. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 1997; 137 (06) 1421-31.
  • 132 Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 2002; 4 (04) E101-8.
  • 133 Watton SJ, Downward J. Akt/PKB localisation and 3’ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr Biol 1999; 9 (08) 433-6.
  • 134 Boussadia O, Kutsch S, Hierholzer A. et al. E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 2002; 115 1-2 53-62.
  • 135 Michalides R, Volberg T, Geiger B. Augmentation of adherens junction formation in mesenchymal cells by co-expression of N-CAM or short term stimulation of tyrosine-phosphorylation. Cell Adhes Commun 1994; 2: 481-90.
  • 136 Prowse DM, Cadwallader GP, Pitts JD. E-cadherin expression can alter the specificity of gap junction formation. Cell Biol Int 1997; 21 (12) 833-43.
  • 137 Ko K, Arora P, Lee W. et al. Biochemical and functional characterization of intercellular adhesion and gap junctions in fibroblasts. Am J Physiol Cell Physiol 2000; 279 (01) C147-57.
  • 138 Shin CS, Lecanda F, Sheikh S. et al. Relative abundance of different cadherins defines differentiation of mesenchymal precursors into osteogenic, myogenic, or adipogenic pathways. J Cell Biochem 2000; 78 (04) 566-77.
  • 139 Van Hoorde L, Braet K, Mareel M. The N-cadherin/catenin complex in colon fibroblasts and myofibroblasts. Cell Adhes Commun 1999; 7 (02) 139-50.
  • 140 Itoh M, Nagafuchi A, Yonemura S. et al. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121 (03) 491-502.
  • 141 Hoffmann I, Balling R. Cloning and expression analysis of a novel mesodermally expressed cadherin. Dev Biol 1995; 169 (01) 337-46.
  • 142 Simonneau L, Kitagawa M, Suzuki S. et al. Cadherin 11 expression marks the mesenchymal phenotype: towards new functions for cadherins?. Cell Adhes Commun 1995; 3 (02) 115-30.
  • 143 Kimura Y, Matsunami H, Inoue T. et al. Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev Biol 1995; 169 (01) 347-58.
  • 144 Orlandini M, Oliviero S. In fibroblasts Vegf-D expression is induced by cell-cell contact mediated by cadherin-11. J Biol Chem 2001; 276 (09) 6576-81.
  • 145 Matsuyoshi N, Imamura S. Multiple cadherins are expressed in human fibroblasts. Biochem Biophys Res Commun 1997; 235 (02) 355-8.
  • 146 Dunne J, Hanby AM, Poulsom R. et al. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 1995; 30 (02) 207-23.