Thromb Haemost 2010; 104(02): 200-206
DOI: 10.1160/TH09-08-0554
Viewpoint Article
Schattauer GmbH

Dual modulation of nitric oxide production in the heart during ischaemia/reperfusion injury and inflammation

Elena Darra*
1   Department Morphological and Biomedical Science, University of Verona, Verona, Italy
,
Alessio Rungatscher*
2   Division of Cardiac Surgery University of Verona, Verona, Italy
,
Alessandra Carcereri de Prati
1   Department Morphological and Biomedical Science, University of Verona, Verona, Italy
,
Bruno K. Podesser
3   The Ludwig Boltzmann Cluster for Cardiovascular Research, Medical University of Vienna and Department of Cardiac Surgery, LKH St. Pölten, St. Pölten, Austria
,
Giuseppe Faggian
2   Division of Cardiac Surgery University of Verona, Verona, Italy
,
Tiziano Scarabelli
4   St John Hospital & Medical Center, Wayne State University, Detroit, Michigan, USA
,
Alessandro Mazzucco
2   Division of Cardiac Surgery University of Verona, Verona, Italy
,
Seth Hallström
5   Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University Graz, Graz, Austria
,
Hisanori Suzuki
1   Department Morphological and Biomedical Science, University of Verona, Verona, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 12. August 2009

Accepted after major revision: 29. März 2010

Publikationsdatum:
24. November 2017 (online)

Summary

Nitric oxide (NO) homeostasis maintained by neuronal/endothelial nitric oxide (NO) synthase (n/eNOS) contributes to regulate cardiac function under physiological conditions. At the early stages of ischaemia, NO homeostasis is disturbed due to Ca2+-dependent e/nNOS activation. In endothelial cells, successive drop in NO concentration may occur due to both uncoupling of eNOS and/or successive inhibition of nNOS catalytic activity mediated by arachidonic acid-induced tyrosine phosphorylation of this enzyme. The reduced NO bioavailability triggers nuclear factor (NF)-κB activation followed by the induction of inducible NOS (iNOS) expression. In cardiomyocytes ischaemia also triggers the induction of iNOS expression during reperfusion. The massive amounts of NO which are subsequently produced following iNOS induction may exert on cardiomyocytes and the other cell types of cells of the heart, such as endothelial and smooth muscle cells, macrophages and neutrophils, opposing effects, either beneficial or toxic. The balance between these two double-faced actions may contribute to the final clinical outcomes, determining the degree of functional adaptation of the heart to ischaemia/reperfusion injury. In the light of this new vision on the critical role played by the cross-talk between n/eNOS and iNOS as well as the non enzymatic NO production by nitrite, we have reason to believe that new pharmacological measurements or experimental interventions, such as ischaemic preconditioning, aimed at counteracting the drop in NO levels beyond the normal range of NO homeostasis during early reperfusion can represent an efficient strategy to reduce the extent of functional impairment and cardiac damage in the heart exposed to ischaemia/reperfusion injury.

* These authors contributed equally to the preparation of this paper.


 
  • References

  • 1 Huk I, Nanobashvili J, Neumayer C. et al. L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation 1997; 96: 667-675.
  • 2 Rastaldo R, Pagliaro P, Cappello S. et al. Nitric oxide and cardiac function. Life Sci 2007; 16: 779-793.
  • 3 Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-142.
  • 4 Vilahur G, Segalés E, Casaní L. et al. A novel anti-ischemic nitric oxide donor inhibits thrombosis without modifying haemodynamic parameters. Thromb Hae-most 2004; 91: 1035-1043.
  • 5 Vilahur G, Pena E, Padró T. et al. Protein disulphide isomerase-mediated LA419– NO release provides additional antithrombotic effects to the blockade of the ADP receptor. Thromb Haemost 2007; 97: 650-657.
  • 6 Gresele P, Momi S, Migliacci R. Endothelium, venous thromboembolism and ischaemic cardiovascular events. Thromb Haemost 2010; 103: 56-61.
  • 7 Igarashi J, Bernier SG, Michel T. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J Biol Chem 2001; 276: 12420-12426.
  • 8 Mariotto S, Menegazzi M, Suzuki H. Biochemical aspects of nitric oxide. Curr Pharm Design 2004; 01: 1627-1645.
  • 9 Sugiyama T, Levy BD, Michel TJ. Tetrahydrobiopterin recycling, a key determinant of endothelial nitricoxide synthase-dependent signaling pathways in cultured vascular endothelial cells. Biol Chem 2009; 08: 12691-12700.
  • 10 Napoli C, de Nigris F, Williams-Ignarro S. et al. Nitric oxide and atherosclerosis: an update. Nitric Oxide 2006; 15: 265-279.
  • 11 Siasos G, Tousoulis D, Siasou Z. et al. Shear stress, protein kinases and athero-sclerosis. Curr Med Chem 2007; 14: 1567-1572.
  • 12 Mariotto S, Cuzzolin L, Adami A. et al. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils. Br J Pharmacol 1995; 114: 1105-1106.
  • 13 Mariotto S, Cuzzolin L, Adami A. et al. Effect of a new non-steroidal anti-inflammatory drug, nitroflurbiprofen, on the expression of inducible nitric oxide synthase in rat neutrophils. Br J Pharmacol 1995; 115: 225-226.
  • 14 Colasanti M, Persichini T, Menegazzi M. et al. Induction of nitric oxide synthase mRNA expression. Suppression by exogenous nitric oxide. J Biol Chem 1995; 279: 26731-26733.
  • 15 Colasanti M, Suzuki H. The dual personality of NO. Trends Pharmacol Sci 2000; 21: 249-252.
  • 16 Mariotto S, Cavalieri E, Amelio E. et al. Extracorporeal shock waves: from lithotripsy to anti-inflammatory action by NO production. Nitric Oxide 2000; 12: 89-96.
  • 17 Mariotto S, Suzuki Y, Persichini T. et al. Cross-talk between NO and arachidonic acid in inflammation. Curr Med Chem 2007; 14: 1940-1944.
  • 18 Persichini T, Cantoni O, Suzuki H. et al. Cross-Talk Between Constitutive and Inducible NO Synthase: An Update. Antioxid Redox Signal 2006; 08: 949-954.
  • 19 Colasanti M, Persichini T. Nitric oxide: an inhibitor of NF-kappaB/Rel system in glial cells. Brain Res Bull 2000; 52: 155-161.
  • 20 Palomba L, Persichini T, Mazzone V. et al. Inhibition of nitric-oxide synthase-I (NOS-I)-dependent nitric oxide production by lipopolysaccharide plus interferon-gamma is mediated by arachidonic acid. Effects on NFkappaB activation and late inducible NOS expression. J Biol Chem 2004; 16: 29895-29901.
  • 21 Palomba L, Bianchi M, Persichini T. et al. Downregulation of nitric oxide formation by cytosolic phospholipase A2-released arachidonic acid. Free Radic Biol Med 2004; 01: 319-329.
  • 22 Dudzinski DM, Igarashi J, Greif D. et al. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 2006; 46: 235-276.
  • 23 Kelly RA, Balligad JL, Smiths TW. Nitric oxide and cardiac function. Circ Res 1996; 79: 363-380.
  • 24 Smith JA, Shah AM, Lewis MJ. Factors released from the endocardium of the ferret and the pig modulate myocardial contraction. J Physiol (Lond) 1991; 439: 1-14.
  • 25 Schulz R, Smith JA, Lewis MJ. et al. Nitric oxide synthesis in cultured endocardial cells of the pig. Br J Pharmacol. 1991; 104: 21-24.
  • 26 Balligand J-L, Kobzik L, Han X. et al. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 1995; 270: 14582-14586.
  • 27 Han X, Kobzik L, Balligand J-L. et al. Nitric oxide synthase (NOS3)–mediated cholinergic modulation of Ca2+ current in adult rabbit atrioventricular nodal cells. Circ Res 1996; 78: 998-1008.
  • 28 Reiling N, Ulmer AJ, Duchrow M. et al. Nitric oxide synthase: mRNA expression of different isoforms in human monocytes/macrophages. Eur J Immunol 1994; 24: 1941-1944.
  • 29 Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci 1995; 57: 2049-2055.
  • 30 Kleinbongard P, Keymel S, Kelm M. New functional aspects of the L-arginine-nitric oxide metabolism within the circulating blood. Thromb Haemost 2007; 98: 970-974.
  • 31 Schwarz P, Diem R, Dun NJ. et al. Endogenous and exogenous nitric oxide inhibits norepinephrine release from rat heart sympathetic nerves. Circ Res 1995; 77: 841-848.
  • 32 Klimaschewski L, Kummer W, Mayer B. et al. Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart. Circ Res 1992; 71: 1533-1537.
  • 33 Tanaka K, Hassall CJS, Burnstock G. Distribution of intracardiac neurones and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. Cell Tissue Res 1993; 273: 293-300.
  • 34 Hassall CJS, Saffrey MJ, Belai A. et al. Nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in a subpopulation of intrinsic neurones of the guinea-pig heart. Neurosci Lett 1992; 143: 65-68.
  • 35 Ursell PC, Mayes M. Anatomic distribution of nitric oxide synthase in the heart. Int J Cardiol 1995; 50: 217-223.
  • 36 Sosunov AA, Hassall CJS, Loesch A. et al. Nitric oxide synthase-containing neurones and nerve fibers within cardiac ganglia of rat and guinea-pig: an electron-microscopic immunocytochemical study. Cell Tissue Res 1996; 284: 19-28.
  • 37 Tanaka K, Chiba T. Nitric oxide synthase containing nerves in the atrioventricular node of the guinea pig heart. J Auton Nerv Syst 1995; 51: 245-253.
  • 38 Zhang J, Snyder SH. Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol 1995; 35: 213-233.
  • 39 Silvagno F, Xia H, Bredt DS. Neuronal nitric-oxide synthasemu, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 1996; 271: 11204-11208.
  • 40 Schulz R, Nava E, Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol 1992; 105: 575-580.
  • 41 Ungureanu-Longrois D, Balligand J-L, Simmons WW. et al. Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to ?-adrenergic agonists. Circ Res 1995; 77: 494-502.
  • 42 Balligand JL, Ungureanu-Longrois D, Simmons WW et al. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol 1995; 268: H1293-H1303.
  • 43 Shindo T, Ikeda U, Ohkawa F. et al. Nitric oxide synthesis in cardiac myocytes and fibroblasts by inflammatory cytokines. Cardiovasc Res 1995; 29: 813-819.
  • 44 Farivar RS, Chobanian AV, Brecher P. Salicylate or aspirin inhibits the induction of the inducible nitric oxide synthase in rat cardiac fibroblasts. Circ Res 1996; 78: 759-768.
  • 45 Spink J, Cohen J, Evans TJ. The cytokine responsive vascular smooth muscle cell enhancer of inducible nitric oxide synthase. Activation by nuclear factor-kappa B. J Biol Chem 1995; 270: 29541-29547.
  • 46 Tavener SA, Kubes P. Cellular and molecular mechanisms underlying LPS-associated myocyte impairment. Am J Physiol Heart Circ Physiol 2006; 290: H800-H806.
  • 47 Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 2004; 15: 402-413.
  • 48 Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006; 40: 16-23.
  • 49 Podesser BK, Hallström S. Nitric oxide homeostasis as a target for drug additives to cardioplegia. Br J Pharmacol 2007; 151: 930-940.
  • 50 Hallström S, Gasser H, Neumayer C. et al. S-nitroso human serum albumin treatment reduces ischemia/reperfusion injury in skeletal muscle via nitric oxide release. Circulation 2002; 105: 3032-3038.
  • 51 Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001; 33: 1897-1918.
  • 52 Hallström S, Franz M, Gasser H. et al. S-nitroso human serum albumin reduces ischaemia/reperfusion injury in the pig heart after unprotected warm ischaemia. Cardiovasc Res 2008; 77: 506-514.
  • 53 Burton KP, Buja LM, Sen A. et al. Accumulation of arachidonate in triacylglycerols and unesterified fatty acids during ischemia and reflow in the isolated rat heart. Correlation with the loss of contractile function and the development of calcium overload. Am J Pathol 1986; 124: 238-245.
  • 54 Fiedler VB. Role of arachidonic acid metabolites in cardiac ischemia and reperfusion injury. Pharmacotherapy. 1988; 08: 158-168.
  • 55 Karmazyn M, Moffat MP. Toxic properties of arachidonic acid on normal, ischemic and reperfused hearts. Indirect evidence for free radical involvement. Prostaglandins Leukot Med 1985; 17: 251-264.
  • 56 Zenebe WJ, Nazarewicz RR, Parihar M. et al. Hypoxia/reoxygenation of isolated rat heart mitochondria causes cytochrome c release and oxidative stress; evidence for involvement of mitochondrial nitric oxide synthase. J Mol Cell Cardiol 2007; 43: 411-419.
  • 57 Kanai AJ, Pearce LL, Clemens PR. et al. Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 2001; 20 (98) 14126-14131.
  • 58 Malinski T, Taha Z. Nitric oxide release from a single cell measurement in situ by a porphyrinic based microsensor. Nature 1992; 358: 676-678.
  • 59 Miklós Z, Ivanics T, Roemen TH. et al. Time related changes in calcium handling in the isolated ischemic and reperfused rat heart. Mol Cell Biochem 2003; 250: 115-124.
  • 60 Jakubowski A, Maksimovich N, Olszanecki R. et al. S-nitroso human serum albumin given after LPS challenge reduces acute lung injury and prolongs survival in a rat model of endotoxemia. Naunyn Schmiedebergs Arch Pharmacol 2009; 379: 281-290.
  • 61 Hein TW, Zhang C, Wang W. et al. Ischemia-reperfusion selectively impairs nitric oxide-mediated dilation in coronary arterioles: counteracting role of arginase. FASEB J 2003; 17: 2328-2330.
  • 62 Jung C, Gonon AT, Sjoquist PO. et al. Arginase inhibition mediates cardioprotection during ischemia-reperfusion Cardiovasc Res. 2010; 85: 147-154.
  • 63 Kanno S, Lee PC, Zhang Y. et al. Attenuation of myocardial ischemia/reperfusion injury by superinduction of inducible nitric oxide synthase. Circulation 2000; 101: 2742-2748.
  • 64 Suzuki H, Colasanti M. Cross-talk between constitutive and inducible nitric oxide synthases. Circulation 2001; 103: E8
  • 65 Kitamoto S, Egashira K, Kataoka C. et al. Increased activity of nuclear factor-kappaB participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 2000; 102: 806-812.
  • 66 Das S, Alagappan VK, Bagchi D. et al. Coordinated induction of iNOS-VEGF-KDR-eNOS after resveratrol consumption: a potential mechanism for resveratrol preconditioning of the heart. Vascul Pharmacol 2005; 42: 281-289.
  • 67 Zhao TC, Taher MM, Valerie KC. et al. 9p38 triggers late preconditioning elicited by anisomycin in heart: involvement of NF-kappaB and iNOS. Circ Res 2001; 89: 915-922.
  • 68 Zingarelli B, Hake PW, Yang Z. et al. Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kappaB and AP-1 activation and enhances myocardial damage. FASEB J 2002; 16: 327-342.
  • 69 Zhao TC, Kukreja RC. Late preconditioning elicited by activation of adenosine A(3) receptor in heart: role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol 2002; 34: 263-277.
  • 70 Li G, Labruto F, Sirsjö A. et al. Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg 2004; 26: 968-973.
  • 71 Kukreja RC. NFkappaB activation during ischemia/reperfusion in heart: friend or foe?. J Mol Cell Cardiol 2002; 34: 1301-1304.
  • 72 Yeh CH, Chen TP, Lee CH. et al. Cardioplegia-induced cardiac arrest under cardiopulmonary bypass decreased nitric oxide production which induced cardio-myocytic apoptosis via nuclear factor kappa B activation. Shock 2007; 27: 422-428.
  • 73 Liu P, Hock CE, Nagele R. et al. Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats. Am J Physiol 1997; 272: H2327-H2336.
  • 74 Wildhirt SM, Weismueller S, Schulze C. et al. Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits: evidence for a late phase of nitric oxide-mediated reperfusion injury. Cardiovasc Res 1999; 15: 698-711.
  • 75 Matejovic M, Krouzecky A, Radej J. et al. Coagulation and endothelial dysfunction during longterm hyperdynamic porcine bacteremia-effects of selective inducible nitric oxide synthase inhibition. Thromb Haemost 2007; 97: 304-309.
  • 76 Sun J, Picht E, Ginsburg KS. et al. Hypercontractile Female Hearts Exibit Increased S-nitrosylation of the L-Type Ca2+ channel a1 subunit and reduced ischemia/repefusion injury. Circ Res 2006; 98: 403-411.
  • 77 Cross H, Murphy E, Steenbergen C. Ca2+ loading and adrenergic stimulation reveal male/female differences in susceptibility to ischemia-reperfusion injury. Am. J Physiol Heart Circ Physiol 2002; 283: H481-H489.
  • 78 Baxter GF, Yellon DM. Ischaemic preconditioning of myocardium: a new paradigm for clinical cardioprotection?. Br J Clin Pharmacol 1994; 38: 381-387.
  • 79 Bolli R. The late phase of preconditioning. Circ Res 2000; 87: 972-983.
  • 80 Nakano A, Liu GS, Heusch G. et al. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol. 2000; 32: 1159-1167.
  • 81 Post H, Schulz R, Behrends M. et al. No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine. J Mol Cell Cardiol 2000; 32: 725-733.
  • 82 Guo Y, Jones WK, Xuan Y-T. et al. The late phase of ischemic preconditioning is abrogated by targeted disruption of the iNOS gene. Proc Natl Acad Sci USA 1999; 96: 11507-11512.
  • 83 West MB, Rokosh G, Obal D. et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 2008; 118: 1970-1978.
  • 84 Bell RM, Smith CC, Yellon DM. Nitric oxide as a mediator of delayed pharmacological (A(1) receptor triggered) preconditioning; is eNOS masquerading as iNOS?. Cardiovasc Res 2002; 53: 405-413.
  • 85 Laude K, Favre J, Thuillez C. et al. NO produced by endothelial NO synthase is a mediator of delayed preconditioning-induced endothelial protection. Am J Physiol Heart Circ Physiol 2003; 284: 2053-2060.
  • 86 Bolli R, Dawn B, Tang XL. et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998; 93: 325-338.
  • 87 Schulz R, Cohen MV, Behrends M. et al. Signal transduction of ischemic preconditioning. Cardiovasc Res 2001; 52: 181-198.
  • 88 Gladwin MT, Schechter AN, Kim-Shapiro DB. et al. The emerging biology of the nitrite anion. Nat Chem Biol 2005; 01: 308-314.
  • 89 Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 2008; 07: 156-167.
  • 90 Rodriguez J, Maloney RE, Rassaf T. et al. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA 2003; 100: 336-341.
  • 91 Shiva S, Gladwin MT. Nitrite mediates cytoprotection after ischemia/reperfusion by modulating mitochondrial function. Basic Res Cardiol 2009; 104: 113-119.
  • 92 Webb A, Bond R, McLean P. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci USA 2004; 101: 13683-13688.
  • 93 Hendgen-Cotta UB, Merx MW, Shiva S. et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA 2008; 105: 10256-10261.
  • 94 Bryan NS, Calvert JW, Gundewar S. et al. Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radic Biol Med 2008; 45: 468-474.
  • 95 Shiva S, Sack MN, Greer JJ. et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med 2007; 204: 2089-2102.
  • 96 Webb A, Bond R, McLean P. et al. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci USA 2004; 101: 13683-13688.
  • 97 Dezfulian C, Shiva S, Alekseyenko A. et al. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation 2009; 120: 897-905.