Vet Comp Orthop Traumatol 2008; 21(01): 49-58
DOI: 10.3415/VCOT-07-03-0022
Original Research
Schattauer GmbH

Fracture configurations of the equine radius and tibia after a simulated kick

A. E. Fürst
1   Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
,
S. Oswald
1   Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
,
S. Jäggin
1   Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
,
G. Piskoty
2   Swiss Federal Laboratories for Materials Testing and Research (EMPA), Dübendorf, Switzerland
,
S. Michel
1   Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
,
J. A. Auer
1   Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
› Author Affiliations
Further Information

Publication History

Received 07 March 2007

Accepted 23 May 2007

Publication Date:
17 December 2017 (online)

Summary

The objective of this postmortem study was to determine the fracture configurations of the equine radius and tibia after a simulated kick. Fracture configurations of 35 radii and 36 tibiae from 19 adult horses were evaluated after a simulated kick in an experimental exvivo study. The bones were dissected, the proximal and distal ends were embedded in resin, fixed horizontally and preloaded in compression, and a steel impactor, designed to simulate a shod equine hoof, was dropped from a height of three to six metres onto the diaphysis. The experiments were filmed with a high-speed camera (30,000 pictures/second). The bones were then photographed and radiographed using a C-arm based 3D imaging device. A software programme (Osirix) was used to reconstruct the fissured and fractured bones three-dimensionally on a computer screen for assessment of the fracture configuration and fissure lines. Incomplete fractures occurred in 26 bones and complete fractures in 42. The complete fractures included 22 butterfly and 20 simple fractures; the latter included 17 oblique, two transverse and one longitudinal fracture. Additional longitudinal fissures occurred in 98% of the fractures. The butterfly fragment was always located on the side opposite the impact. There was a significant correlation between the type of bone and the fracture configuration: butterfly and oblique fractures occurred more frequently in the tibia, and incomplete fractures occurred more frequently in the radius. The data collected can be used to optimize evaluation of fractures and fissures caused by a kick and thereby improve surgical stabilization.

 
  • References

  • 1 Derungs SB, Furst AE, Hassig M. et al. Frequency, consequences and clinical outcome of kick injuries in horses: 256 cases (1992 – 2000). Wien. Tierarztl Mschr 2004; 91: 114-119.
  • 2 Auer Auer, Watkins JP. Treatment of radial fractures in adult horses: an analysis of 15 clinical cases. Equine VetJ 1987; 19: 103-110.
  • 3 Sanders-Shamis M, Bramlage LR, Gable AA. Radius fractures in the horse: aretrospective study of 47 cases. Equine Vet J 1986; 18: 432-437.
  • 4 Auer JA. Fractures of the Radius. In: Nixon AJ, editor. Equine Fracture Repair. Philadelphia: WB. Saunders Company 1996; 222-230.
  • 5 Watkins JP. Fractures of the Tibia. In: Nixon AJ, editor. Equine Fracture Repair. Philadelphia: WB. Saunders Company 1996; 273-283.
  • 6 Derungs S, Furst A, Haas C. et al. Fissure fractures of the radius and tibia in 23 horses: a retrospective study. Equine Vet Educ 2001; 13: 313-318.
  • 7 Schille AU. Knochenverletzungen beim Pferd durch Schlagverletzungen Klärung derAetiopathogenese im Röntgenbild, Thesis. University of Berlin; 2002
  • 8 O'Sullivan CB, Lumsden JM. Stress fractures of the tibia and humerus in Thoroughbred racehorses: 99 cases (1992-2000). J Am Vet Med Assoc 2003; 222: 491-498.
  • 9 Currey JD. Bone architecture and fracture. Curr Osteoporos Rep 2005; 3: 52-56.
  • 10 Kramer M, Burow K, Heger A. Fracture Mechanisms ofLower Legs Under Impact Load. In: Proc. of the 17th Stapp Car Crash Conference; Oklahoma City. 1973: 81-100.
  • 11 Yang J. Review of Injury Biomechanics in Car-Pedestrian Collisions. Crash Safety Division, Machine andVehicle Systems, Chalmers University of Technology, SE 41296 Goteborg, Sweden 2002; 1-19.
  • 12 Leitz G. Ursachen des Bruchverhaltens langer Rohrenknochen: Untersucht am Beispiel dermen- schlichen Fibula. Bucherei des Orthopaden Band 6, Ferdinand EnkeVerlag Stuttgart. 1970
  • 13 Sellier K. [On the mechanics of bone fracture]. Dtsch Z Gesamte Gerichtl Med 1965; 56: 341-348.
  • 14 Reilly Reilly, Currey JD. The development ofmicro- cracking and failure in bone depends on the loading mode to which it is adapted. J Exp Biol 1999; 202 (Pt 5) 543-552.
  • 15 Riggs CM. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol 1993; 187: 231-238.
  • 16 Carter Carter, Spengler DM. Biomechanics of fracture. In: Sumner-Smith G. editor Bone in Clinical Orthopedics. Stuttgart-New York: Thieme Verlag; 2002: 261-286.
  • 17 Autefage A. The point of view of the veterinary surgeon: bone and fracture. Injury 2000; 31 (Suppl. 03) C50-5.
  • 18 Markel MD. Fracture Biomechanics. In: Nixon A. editor Equine Fracture Repair. Philadelphia: WB. Saunders Company; 1996: 10-18.
  • 19 Johner R, Staubli HU, Gunst M. et al. The point of view of the clinician: a prospective study of the mechanism of accidents and the morphology of tibial and fibular shaft fractures. Injury 2000; 31 (Suppl. 03) C45-49.
  • 20 Johner Johner, Wruhs O. Classification of tibial shaft fractures and correlation with results after rigid internal fixation. Clin Orthop Relat Res 1983: 7-25.
  • 21 Grutzner PA, Hebecker A, Waelti H. et al. Klinische Studie zur registrierungsfreien 3D Navigation mit dem mobilen C Bogen SIREMOBIL Iso C3D. electromedia 2003; 71: 58-67.
  • 22 Euler E, Wirth S, Linsenmaier U. et al. [Comparative study of the quality of C-arm based 3D imaging of the talus]. Unfallchirurg 2001; 104: 839-846.
  • 23 Reilly Reilly, Burstein AH. Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 1974; 56: 1001-1022.
  • 24 Currey JD. How well are bones designed to resist fracture?. J Bone Miner Res 2003; 18: 591-598.
  • 25 Currey JD. Bone strength: what are we trying to measure?. Calcif Tissue Int 2001; 68: 205-210.
  • 26 Derungs S. Kickinjuriesinhorses-aretrospectiv study, thesis. Equine clinic of the University of Zurich. 2002
  • 27 Riggs CM. Aetiopathogenesis ofparasagittal fractures of the distal condyles of the third metacarpal and third metatarsal bones - review of the liter- atur. Equine VetJ 1999; 31: 116-120.
  • 28 Riggs CM, Whitehouse GH, Boyde A. Structural variation of the distal condyles of the third meta- carpal and third metatarsal bones in the horse. Equine Vet J 1999; 31: 130-139.
  • 29 Martens M. Mechanical properties of human bone. PhD thesis. University of Louvain (Leuven); 1985
  • 30 Knese KH, Hahne O, Biermann H. Festigkeitsun- tersuchungen an menschlichen Extremitatenknochen. Gegenbaurs Morphologisches Jahrbuch. 1956: 96.
  • 31 Auer Auer, Stick JA. Equine Surgery. St. Louis, Missouri: WB. Saunders Elsevier; 2006
  • 32 Nixon AJ. Equine Fracture Repair. Philadelphia – London – Toronto: W.B. Saunders Company; 1996
  • 33 Sumner-Smith G. Bone in Clinical Orthopedics. Stuttgart-New York: Georg Thieme Verlag; 2002
  • 34 McElhaney JH. Dynamic response of bone and muscle tissue. JAppl Physiol 1966; 1231-1236.
  • 35 Meier D. Xtreme computed tomograhic study of the equine radius and tibia, thesis. Equine clinic of the university of Zurich. 2005
  • 36 Currey JD. What should bones be designed to do?. Calcif Tissue Int 1984; 36 (Suppl. 01) S7-10.
  • 37 Martin RB, Stover SM, Gibson VA. et al. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. J Orthop Res 1996; 14: 794-801.
  • 38 Nikolic Nikolic, Hancevic J, Hudec M. et al. Absorption of the impact energy in the palmar soft tissues. Anat Embryol (Berl) 1975; 148: 215-221.
  • 39 Currey JD. The effect of protection on the impact strength ofrabbits' bones. Acta Anat (Basel) 1968; 71: 87-93.
  • 40 Sedlin Sedlin, Hirsch C. Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 1966; 37: 29-48.
  • 41 Pelker RR, Friedlaender GE, Markham TC. et al. Effects of freezing and freeze-drying on the bio- mechanical properties of rat bone. J Orthop Res 1984; 1: 405-411.
  • 42 Chuang Chuang, Lieu DK. A parametric study of the thoracic injury potential of basic taekwondo kicks. J Biomech Eng 1992; 114: 346-351.
  • 43 Piskoty G, Jaggin S, Michel SA. et al. Experimental study of fractures of longe bones due to impact loading. In: First international conference on mechanics ofmiiomaterials & tissues. 2005. Waikoloa, Hawaii, USA: Rob O. Ritchie; 2005