RSS-Feed abonnieren
DOI: 10.1055/a-2691-6148
Glucocorticoids and GRα Signaling in Critical Illness: Phase-Specific Homeostatic Corrections Across Systems
Authors

Abstract
Glucocorticoid (GC)–activated glucocorticoid receptor α (GRα) signaling—underpins survival and recovery during severe physiological stress. Rooted in evolution, these adjustments are not mere damage control; they constitute a coordinated, dynamic, phase-specific program that integrates metabolic, immune (innate and adaptive), cardiovascular, neuroendocrine, and organ functions. By boosting mitochondrial energy production and regulating inflammatory and hemostatic pathways, the GC–GRα axis enables adaptation to the demands of critical illness. These mechanisms operate across tissues and time to sustain systemic stability. This program unfolds in three phases. In the priming phase, innate immunity is rapidly mobilized, bioenergetic reserves are secured, and cardiovascular function is enhanced to build resilience. With the immediate threat contained, the modulatory phase suppresses excessive inflammation and oxidative stress and restores and preserves vascular integrity. In the restorative phase, resolution of injury enables structural and functional repair, re-establishing tissue architecture and function for long-term recovery. Failure to enter or complete the modulatory phase prolongs dysregulated responses that impede recovery. GRα is central: beyond anti-inflammatory actions, it shapes pro-inflammatory and metabolic programs. Through context-dependent co-regulation with nuclear factor-κB and activator protein-1, GRα directs cell-specific responses, drives chromatin remodeling, and orchestrates phase-specific gene expression to maintain a dynamic balance essential for survival. When transition to the modulatory phase fails, persistent stress signaling depletes neuroendocrine reserves, impairs bioenergetics, and exhausts key micronutrients, increasing allostatic load and mortality risk. Clinical modifiers—including critical illness-related corticosteroid insufficiency (CIRCI), mitochondrial dysfunction, hypovitaminosis, and oxidative stress—accelerate metabolic strain and decline toward organ failure. Mechanism-aligned care targeting GRα and synchronizing therapy with recovery phases enables individualized CIRCI correction, tempering of dysregulated inflammation, and organ recovery. Recognizing GC–GRα as the coordinator of homeostatic corrections highlights its evolutionary importance and guides strategies that complement the body's capacity to restore homeostasis.
Keywords
critical illness - glucocorticoids - GRα - GC–GRα signaling - homeostatic adaptation - phase-specific response - endothelial homeostasis - NF-κBDeclaration of GenAI Use
During the writing process of this paper, the author(s) used GPT-4 in order to structure [Tables 1] and [2]. Also, the content of [Table 3] was finalized using GPT-4 with the assistance of AI. The author(s) reviewed and edited the text and take(s) full responsibility for the content of the paper.
Note
In addition to the previously used sources,[2] the Consensus database was queried with section-specific, question-based prompts aligned to each topic. Manual searching of articles, including reference lists of cited publications, was also performed to avoid omissions. The search for articles was completed in October 2024.
Publikationsverlauf
Eingereicht: 12. Februar 2025
Angenommen: 28. August 2025
Artikel online veröffentlicht:
16. September 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Meduri GU. Glucocorticoid receptor alpha: origins and functions of the master regulator of homeostatic corrections in health and critical illness. Review. Explor Endocr Metab Dis 2025; 2: 101426 . Accessed September 2, 2025 at: https://doiorg/1037349/eemd2025101426
- 2 Annane D, Pastores SM, Arlt W. et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Crit Care Med 2017; 45 (12) 2089-2098
- 3 Meduri GU. An historical review of glucocorticoid treatment in Sepsis. Disease pathophysiology and the design of treatment investigation. Sepsis 1999; 3: 21-38
- 4 Meduri GU. The role of the host defence response in the progression and outcome of ARDS: pathophysiological correlations and response to glucocorticoid treatment. Eur Respir J 1996; 9 (12) 2650-2670
- 5 Meduri GU. Clinical review: a paradigm shift: the bidirectional effect of inflammation on bacterial growth. Clinical implications for patients with acute respiratory distress syndrome. Crit Care 2002; 6 (01) 24-29
- 6 Meduri GU, Yates CR. Systemic inflammation-associated glucocorticoid resistance and outcome of ARDS. Ann N Y Acad Sci 2004; 1024: 24-53
- 7 Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 2009; 136 (06) 1631-1643
- 8 Meduri GU, Eltorky MA. Understanding ARDS-associated fibroproliferation. Intensive Care Med 2015; 41 (03) 517-520
- 9 Meduri GU, Chrousos GP. General adaptation in critical illness: glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front Endocrinol (Lausanne) 2020; 11 (161) 161
- 10 Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 2018; 19 (11) 731-745
- 11 McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43 (01) 2-15
- 12 Morioka S, Maueröder C, Ravichandran KS. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 2019; 50 (05) 1149-1162
- 13 Nylen ES, Muller B. Endocrine changes in critical illness. J Intensive Care Med 2004; 19 (02) 67-82
- 14 Nesse RM, Young EA. Evolutionary origins and functions of the stress response. J Encyclopedia of stress 2000; 2: 79-84
- 15 del Rey A, Besedovsky HO. Immune-Neuro-Endocrine Reflexes, Circuits, and Networks: Physiologic and Evolutionary Implications. Endocrine Immunology. Karger Publishers; 2017: 1-18
- 16 Angelier F, Wingfield JC. Importance of the glucocorticoid stress response in a changing world: theory, hypotheses and perspectives. Gen Comp Endocrinol 2013; 190: 118-128
- 17 Straub RH, Schradin C. Chronic inflammatory systemic diseases: an evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol Med Public Health 2016; 2016 (01) 37-51
- 18 Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol 2018; 49: 72-85
- 19 Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5 (07) 374-381
- 20 Meduri GU, Psarra A-M, Amrein K. General Adaptation in Critical Illness 2: The Glucocorticoid Signaling System as a Master Rheostat of Homeostatic Corrections in Concerted Action with Mitochondrial and Essential Micronutrient Support. In: Fink G. ed. Handbook of Stress: Stress, Immunology and Inflammation. San Diego: Elsevier; 2024: 263-287 :chap 23. vol. 5
- 21 Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7 (02) 83-105
- 22 Zhang X, Zink F, Hezel F. et al. Metabolic substrate utilization in stress-induced immune cells. Intensive Care Med Exp 2020; 8 (Suppl. 01) 28
- 23 Meduri GU, Chrousos GP. General adaptation in critical illness 1: The glucocorticoid signaling system as master rheostat of homeostatic corrections in concerted action with nuclear factor-κB. Stress: Immunology and Inflammation. Elsevier; 2024: 231-261
- 24 Hawkins RB, Raymond SL, Stortz JA. et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol 2018; 9: 1511
- 25 Cilloniz C, Peroni HJ, Gabarrús A. et al. Lymphopenia is associated with poor outcomes of patients with community-acquired pneumonia and sepsis. Oxford University Press US; 2021
- 26 Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res 2014; 58 (2–3): 193-210
- 27 Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation 2005; 12 (05) 255-269
- 28 Mehdi SF, Qureshi MH, Pervaiz S. et al. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Mol Med 2025; 31 (01) 16
- 29 Meduri GU, Psarra AG. The glucocorticoid system: a multifaceted regulator of mitochondrial function, endothelial homeostasis, and intestinal barrier integrity. Review Semin Respir Crit Care Med 2026; In press
- 30 Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol 2017; 17 (04) 233-247
- 31 Friedman R, Hughes AL. Molecular evolution of the NF-kappaB signaling system. Immunogenetics 2002; 53 (10–11): 964-974
- 32 Rao NA, McCalman MT, Moulos P. et al. Coactivation of GR and NFKB alters the repertoire of their binding sites and target genes. Genome Res 2011; 21 (09) 1404-1416
- 33 Yang Y, Wu J, Wang JK. A database and functional annotation of NF-kappa B target genes. Int J Clin Exp Med 2016; 9 (05) 7986-7995
- 34 Xiao W, Mindrinos MN, Seok J. et al; Inflammation and Host Response to Injury Large-Scale Collaborative Research Program. A genomic storm in critically injured humans. J Exp Med 2011; 208 (13) 2581-2590
- 35 Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015; 22 (1–2): 6-19
- 36 LeGrand EK, Alcock J. Turning up the heat: immune brinksmanship in the acute-phase response. Q Rev Biol 2012; 87 (01) 3-18
- 37 Meduri GU, Tolley EA, Chinn A, Stentz F, Postlethwaite A. Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment. Am J Respir Crit Care Med 1998; 158 (5 Pt 1): 1432-1441
- 38 Picard M, Juster RP, McEwen BS. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids. Nat Rev Endocrinol 2014; 10 (05) 303-310
- 39 Fernández-Serrano S, Dorca J, Coromines M, Carratalà J, Gudiol F, Manresa F. Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia. Clin Diagn Lab Immunol 2003; 10 (05) 813-820
- 40 Igonin AA, Armstrong VW, Shipkova M, Lazareva NB, Kukes VG, Oellerich M. Circulating cytokines as markers of systemic inflammatory response in severe community-acquired pneumonia. Clin Biochem 2004; 37 (03) 204-209
- 41 El Solh A, Pineda L, Bouquin P, Mankowski C. Determinants of short and long term functional recovery after hospitalization for community-acquired pneumonia in the elderly: role of inflammatory markers. BMC Geriatr 2006; 6: 12
- 42 Kellum JA, Kong L, Fink MP. et al; GenIMS Investigators. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (GenIMS) study. Arch Intern Med 2007; 167 (15) 1655-1663
- 43 Lee YL, Chen W, Chen LY. et al. Systemic and bronchoalveolar cytokines as predictors of in-hospital mortality in severe community-acquired pneumonia. J Crit Care 2010; 25 (01) 176.e7-176.e13
- 44 Fernandez-Botran R, Uriarte SM, Arnold FW. et al. Contrasting inflammatory responses in severe and non-severe community-acquired pneumonia. Inflammation 2014; 37 (04) 1158-1166
- 45 Gomez HG, Gonzalez SM, Londoño JM. et al. Immunological characterization of compensatory anti-inflammatory response syndrome in patients with severe sepsis: a longitudinal study* . Crit Care Med 2014; 42 (04) 771-780
- 46 van Vught LA, Wiewel MA, Hoogendijk AJ. et al. The host response in patients with sepsis developing intensive care unit-acquired secondary infections. Am J Respir Crit Care Med 2017; 196 (04) 458-470
- 47 Meduri GU, Headley S, Kohler G. et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 1995; 107 (04) 1062-1073
- 48 Meduri GU, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 1995; 108 (05) 1303-1314
- 49 Meduri GU, Muthiah MP, Carratu P, Eltorky M, Chrousos GP. Nuclear factor-kappaB- and glucocorticoid receptor alpha- mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids. Neuroimmunomodulation 2005; 12 (06) 321-338
- 50 Parsons PE, Eisner MD, Thompson BT. et al; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 2005; 33 (01) 1-6 , discussion 230–232
- 51 Sinclair SE, Bijoy J, Golden E, Carratu P, Umberger R, Meduri GU. Interleukin-8 and soluble intercellular adhesion molecule-1 during acute respiratory distress syndrome and in response to prolonged methylprednisolone treatment. Minerva Pneumol 2006; 45 (02) 93-104
- 52 Aisiku IP, Yamal J-M, Doshi P. et al. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. Crit Care 2016; 20 (01) 288
- 53 Böhrer H, Qiu F, Zimmermann T. et al. Role of NFkappaB in the mortality of sepsis. J Clin Invest 1997; 100 (05) 972-985
- 54 Paterson RL, Galley HF, Dhillon JK, Webster NR. Increased nuclear factor kappa B activation in critically ill patients who die. Crit Care Med 2000; 28 (04) 1047-1051
- 55 Arnalich F, Garcia-Palomero E, López J. et al. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis. Infect Immun 2000; 68 (04) 1942-1945
- 56 Kinasewitz GT, Yan SB, Basson B. et al; PROWESS Sepsis Study Group. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism. Crit Care 2004; 8 (02) R82-R90
- 57 Snijders D, Schoorl M, Schoorl M, Bartels PC, van der Werf TS, Boersma WG. D-dimer levels in assessing severity and clinical outcome in patients with community-acquired pneumonia. A secondary analysis of a randomised clinical trial. Eur J Intern Med 2012; 23 (05) 436-441
- 58 van Vught LA, Scicluna BP, Wiewel MA. et al. Comparative analysis of the host response to community-acquired and hospital-acquired pneumonia in critically ill patients. Am J Respir Crit Care Med 2016; 194 (11) 1366-1374
- 59 Mussbacher M, Salzmann M, Brostjan C. et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 2019; 10 (85) 85
- 60 Fiusa MML, Carvalho-Filho MA, Annichino-Bizzacchi JM, De Paula EV. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective. BMC Med 2015; 13 (01) 105
- 61 Sae-Khow K, Tachaboon S, Wright HL. et al. Defective neutrophil function in patients with sepsis is mostly restored by ex vivo ascorbate incubation. J Inflamm Res 2020; 13: 263-274
- 62 Nakamura K, Ogura K, Nakano H. et al. C-reactive protein clustering to clarify persistent inflammation, immunosuppression and catabolism syndrome. Intensive Care Med 2020; 46 (03) 437-443
- 63 Yende S, D'Angelo G, Kellum JA. et al; GenIMS Investigators. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med 2008; 177 (11) 1242-1247
- 64 Yende S, Kellum JA, Talisa VB. et al. Long-term host immune response trajectories among hospitalized patients with sepsis. JAMA Netw Open 2019; 2 (08) e198686-e198686
- 65 Riché F, Chousterman BG, Valleur P, Mebazaa A, Launay J-M, Gayat E. Protracted immune disorders at one year after ICU discharge in patients with septic shock. Crit Care 2018; 22 (01) 42
- 66 Voiriot G, Oualha M, Pierre A. et al; la CRT de la SRLF. Chronic critical illness and post-intensive care syndrome: from pathophysiology to clinical challenges. Ann Intensive Care 2022; 12 (01) 58
- 67 Miller AH. Inflammation versus glucocorticoids as purveyors of pathology during stress: have we reached the tipping point?. Biol Psychiatry 2008; 64 (04) 263-265
- 68 Miller GE, Chen E, Sze J. et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biol Psychiatry 2008; 64 (04) 266-272
- 69 Rodriguez JM, Monsalves-Alvarez M, Henriquez S, Llanos MN, Troncoso R. Glucocorticoid resistance in chronic diseases. Steroids 2016; 115: 182-192
- 70 Valbuena Perez JV, Linnenberger R, Dembek A. et al. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell 2020; 19 (06) e13156
- 71 Kale SS, Yende S. Effects of aging on inflammation and hemostasis through the continuum of critical illness. Aging Dis 2011; 2 (06) 501-511
- 72 Winer L, Beckmann N, Veile RA, Goodman MD, Caldwell CC, Nomellini V. Consumptive coagulopathy is associated with organ dysfunction during PICS. Am J Physiol-Lung C. 2019
- 73 Picca A, Lezza AMS, Leeuwenburgh C. et al. Fueling inflamm-aging through mitochondrial dysfunction: mechanisms and molecular targets. Int J Mol Sci 2017; 18 (05) 933
- 74 Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression. J Mol Endocrinol 2019; 62 (02) R121-R128
- 75 Pinti M, Cevenini E, Nasi M. et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging”. Eur J Immunol 2014; 44 (05) 1552-1562
- 76 Hapgood JP, Avenant C, Moliki JM. Glucocorticoid-independent modulation of GR activity: implications for immunotherapy. Pharmacol Ther 2016; 165: 93-113
- 77 Headley AS, Tolley E, Meduri GU. Infections and the inflammatory response in acute respiratory distress syndrome. Chest 1997; 111 (05) 1306-1321
- 78 Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A 1997; 94 (25) 13600-13605
- 79 Polito A, Lorin de la Grandmaison G, Mansart A. et al. Human and experimental septic shock are characterized by depletion of lipid droplets in the adrenals. Intensive Care Med 2010; 36 (11) 1852-1858
- 80 van Leeuwen HJ, Heezius EC, Dallinga GM, van Strijp JA, Verhoef J, van Kessel KP. Lipoprotein metabolism in patients with severe sepsis. Crit Care Med 2003; 31 (05) 1359-1366
- 81 Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med 2007; 33 (01) 25-35
- 82 Tanaka S, Couret D, Tran-Dinh A. et al. High-density lipoproteins during sepsis: from bench to bedside. Crit Care 2020; 24 (01) 134
- 83 Golucci APBS, Marson FAL, Ribeiro AF, Nogueira RJN. Lipid profile associated with the systemic inflammatory response syndrome and sepsis in critically ill patients. Nutrition 2018; 55–56: 7-14
- 84 Chien JY, Jerng JS, Yu CJ, Yang PC. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Crit Care Med 2005; 33 (08) 1688-1693
- 85 Chenaud C, Merlani PG, Roux-Lombard P. et al. Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation. Crit Care Med 2004; 32 (03) 632-637
- 86 Gordon BR, Parker TS, Levine DM. et al. Relationship of hypolipidemia to cytokine concentrations and outcomes in critically ill surgical patients. Crit Care Med 2001; 29 (08) 1563-1568
- 87 Barlage S, Gnewuch C, Liebisch G. et al. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med 2009; 35 (11) 1877-1885
- 88 Cirstea M, Walley KR, Russell JA, Brunham LR, Genga KR, Boyd JH. Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. J Crit Care 2017; 38: 289-294
- 89 Cai L, Ji A, de Beer FC, Tannock LR, van der Westhuyzen DR. SR-BI protects against endotoxemia in mice through its roles in glucocorticoid production and hepatic clearance. J Clin Invest 2008; 118 (01) 364-375
- 90 van der Voort PHJ, Gerritsen RT, Bakker AJ, Boerma EC, Kuiper MA, de Heide L. HDL-cholesterol level and cortisol response to synacthen in critically ill patients. Intensive Care Med 2003; 29 (12) 2199-2203
- 91 Laviolle B, Annane D, Fougerou C, Bellissant E. Gluco- and mineralocorticoid biological effects of a 7-day treatment with low doses of hydrocortisone and fludrocortisone in septic shock. Intensive Care Med 2012; 38 (08) 1306-1314
- 92 Sharma NK, Tashima AK, Brunialti MKC. et al. Proteomic study revealed cellular assembly and lipid metabolism dysregulation in sepsis secondary to community-acquired pneumonia. Sci Rep 2017; 7 (01) 15606
- 93 De Bruyn L, Téblick A, Van Oudenhove T. et al. Glucocorticoid treatment increases cholesterol availability during critical illness: effect on adrenal and muscle function. Crit Care 2024; 28 (01) 295
- 94 Schwingshackl A, Kimura D, Rovnaghi CR. et al. Regulation of inflammatory biomarkers by intravenous methylprednisolone in pediatric ARDS patients: results from a double-blind, placebo-controlled randomized pilot trial. Cytokine 2016; 77: 63-71
- 95 Meduri GU. Synergistic glucocorticoids, vitamins, and microbiome strategies for gut protection in critical illness. Explor Endocr Metab Dis 2025; (02) 1014xx . In press https://doiorg/1037349/eemd20251014xx
- 96 Huang J, Jia R, Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell Immunol 2018; 334: 1-10
- 97 Muzzi C, Watanabe N, Twomey E. et al. The glucocorticoid receptor in intestinal epithelial cells alleviates colitis and associated colorectal cancer in mice. Cell Mol Gastroenterol Hepatol 2021; 11 (05) 1505-1518
- 98 Ahmed A, Schmidt C, Brunner T. Extra-adrenal glucocorticoid synthesis in the intestinal mucosa: between immune homeostasis and immune escape. Front Immunol 2019; 10: 1438
- 99 Khadka S, Dziadowicz SA, Xu X. et al. Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity. Am J Physiol Gastrointest Liver Physiol 2024; 327 (04) G531-G544
- 100 Bornstein SR, Rutkowski H, Vrezas I. Cytokines and steroidogenesis. Mol Cell Endocrinol 2004; 215 (1–2): 135-141
- 101 Vakharia K, Hinson JP. Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 2005; 146 (03) 1398-1402
- 102 Langouche L, Téblick A, Gunst J, Van den Berghe G. The hypothalamus-pituitary-adrenocortical response to critical illness: a concept in need of revision. Endocr Rev 2023; 44 (06) 1096-1106
- 103 Téblick A, Vander Perre S, Pauwels L. et al. The role of pro-opiomelanocortin in the ACTH-cortisol dissociation of sepsis. Crit Care 2021; 25 (01) 65
- 104 Boonen E, Vervenne H, Meersseman P. et al. Reduced cortisol metabolism during critical illness. N Engl J Med 2013; 368 (16) 1477-1488
- 105 Vassiliadi DA, Vassiliou AG, Ilias I, Tsagarakis S, Kotanidou A, Dimopoulou I. Pituitary-adrenal responses and glucocorticoid receptor expression in critically ill patients with COVID-19. Int J Mol Sci 2021; 22 (21) 11473
- 106 Galvis D, Zavala E, Walker J. et al. The dynamic interaction of systemic inflammation and the hypothalamic-pituitary-adrenal (HPA) axis during and after major surgery. bioRxiv. 2021 . Accessed September 2, 2025 at: 10.1101/2021.08.16.456512
- 107 Malek H, Ebadzadeh MM, Safabakhsh R, Razavi A, Zaringhalam J. Dynamics of the HPA axis and inflammatory cytokines: insights from mathematical modeling. Comput Biol Med 2015; 67 (67) 1-12
- 108 Chrousos GA. Hench Lecture Award: The Evolution of Glucocorticoids. presented at: 2010 ACR/ARHP Annual Scientific Meeting; 2011 ; Atlanta
- 109 Franco LM, Gadkari M, Howe KN. et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J Exp Med 2019; 216 (02) 384-406
- 110 Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev 2014; 35 (04) 671-693
- 111 Nicolaides NC, Charmandari E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones (Athens) 2017; 16 (02) 124-138
- 112 Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93 (03) 1139-1206
- 113 Meduri GU, Annane D, Confalonieri M. et al. Pharmacological principles guiding prolonged glucocorticoid treatment in ARDS. Intensive Care Med 2020; 46 (12) 2284-2296
- 114 Fenton C, Martin C, Jones R. et al. Local steroid activation is a critical mediator of the anti-inflammatory actions of therapeutic glucocorticoids. Ann Rheum Dis 2021; 80 (02) 250-260
- 115 Buttgereit F. Glucocorticoids: surprising new findings on their mechanisms of actions. BMJ Publishing Group Ltd; 2021: 137-139
- 116 Salvante KG, Milano K, Kliman HJ, Nepomnaschy PA. Placental 11 β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression very early during human pregnancy. J Dev Orig Health Dis 2017; 8 (02) 149-154
- 117 Suzuki S, Tsubochi H, Ishibashi H, Suzuki T, Kondo T, Sasano H. Increased expression of 11 β-hydroxysteroid dehydrogenase type 2 in the lungs of patients with acute respiratory distress syndrome. Pathol Int 2003; 53 (11) 751-756
- 118 Schreiber SN. The transcriptional coactivator PGC-1 [alpha] as a modulator of ERR [alpha] and GR signaling: function in mitochondrial biogenesis. University of Basel; 2004
- 119 Diederich S, Eigendorff E, Burkhardt P. et al. 11beta-hydroxysteroid dehydrogenase types 1 and 2: an important pharmacokinetic determinant for the activity of synthetic mineralo- and glucocorticoids. J Clin Endocrinol Metab 2002; 87 (12) 5695-5701
- 120 Téblick A, Van Dyck L, Van Aerde N. et al. Impact of duration of critical illness and level of systemic glucocorticoid availability on tissue-specific glucocorticoid receptor expression and actions: a prospective, observational, cross-sectional human and two translational mouse studies. EBioMedicine 2022; 80: 104057
- 121 Bridgham JT, Eick GN, Larroux C. et al. Protein evolution by molecular tinkering: diversification of the nuclear receptor superfamily from a ligand-dependent ancestor. PLoS Biol 2010; 8 (10) e1000497
- 122 Kino T. Glucocorticoid Receptor. In: Feingold KR, Anawalt B, Boyce A. et al, eds. Endotext. MDText.com, Inc.; 2017
- 123 Whirledge SD, Oakley RH, Myers PH, Lydon JP, DeMayo F, Cidlowski JA. Uterine glucocorticoid receptors are critical for fertility in mice through control of embryo implantation and decidualization. Proc Natl Acad Sci U S A 2015; 112 (49) 15166-15171
- 124 Rog-Zielinska EA, Thomson A, Kenyon CJ. et al. Glucocorticoid receptor is required for foetal heart maturation. Hum Mol Genet 2013; 22 (16) 3269-3282
- 125 Bird AD, McDougall AR, Seow B, Hooper SB, Cole TJ. Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice. Mol Endocrinol 2015; 29 (02) 158-171
- 126 Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and their receptor isoforms: roles in female reproduction, pregnancy, and foetal development. Biology (Basel) 2023; 12 (08) 1104
- 127 Oakley RH, Ramamoorthy S, Foley JF, Busada JT, Lu NZ, Cidlowski JA. Glucocorticoid receptor isoform-specific regulation of development, circadian rhythm, and inflammation in mice. FASEB J 2018; 32 (10) 5258-5271
- 128 Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance?. Proc Nutr Soc 1998; 57 (01) 113-122
- 129 Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity. J Steroid Biochem Mol Biol 2010; 120 (2–3): 69-75
- 130 Ayroldi E, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J 2009; 23 (11) 3649-3658
- 131 Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA. Proinflammatory actions of glucocorticoids: glucocorticoids and TNFα coregulate gene expression in vitro and in vivo. Endocrinology 2012; 153 (08) 3701-3712
- 132 Kadmiel M, Diaz-Jimenez D, Oakley RH. et al. Glucocorticoid receptor signaling is critical for mouse corneal development, inhibition of inflammatory response, and neovascularization of the cornea. Am J Pathol 2024; 194 (10) 1938-1950
- 133 Diaz-Jimenez D, O'Neill E, Aguayo-Abarca F, Kadmiel M, Cidlowski J. Corneal GR signaling is critical for preventing neovascularization and immune cell infiltration of the cornea. J Immunol 2024; 212 (01) 818-6253
- 134 de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6 (06) 463-475
- 135 Liston C, Gan W-B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci U S A 2011; 108 (38) 16074-16079
- 136 Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci 2009; 10 (06) 459-466
- 137 Abrahám I, Harkany T, Horváth KM. et al. Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J Neuroendocrinol 2000; 12 (06) 486-494
- 138 González-Mayoral A, Eid A, Derounian R. et al. Mineralocorticoid receptor knockout in Schwann cells alters myelin sheath thickness. J Endocrinol 2023; 258 (02) e220334
- 139 Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An integrated view on neuronal subsets in the peripheral nervous system and their role in immunoregulation. Front Immunol 2021; 12: 679055
- 140 Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol 2005; 67: 259-284
- 141 Oakley RH, Cidlowski JA. Glucocorticoid signaling in the heart: a cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015; 153: 27-34
- 142 Liu B, Zhang TN, Knight JK, Goodwin JE. The glucocorticoid receptor in cardiovascular health and disease. Cells 2019; 8 (10) 1227
- 143 Goodwin JE, Feng Y, Velazquez H, Sessa WC. Endothelial glucocorticoid receptor is required for protection against sepsis. Proc Natl Acad Sci U S A 2013; 110 (01) 306-311
- 144 Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2004; 2 (01) 1-12
- 145 Zielińska KA, Van Moortel L, Opdenakker G, De Bosscher K, Van den Steen PE. Endothelial response to glucocorticoids in inflammatory diseases. Front Immunol 2016; 7: 592
- 146 Goleva E, Jackson LP, Gleason M, Leung DY. Usefulness of PBMCs to predict clinical response to corticosteroids in asthmatic patients. J Allergy Clin Immunol 2012; 129 (03) 687-693.e1
- 147 Okun JG, Conway S, Schmidt KV. et al. Molecular regulation of urea cycle function by the liver glucocorticoid receptor. Mol Metab 2015; 4 (10) 732-740
- 148 Yang H-H, Su S-H, Ho C-H, Yeh A-H, Lin Y-J, Yu M-J. Glucocorticoid receptor maintains vasopressin responses in kidney collecting duct cells. Front Physiol 2022; 13: 816959
- 149 Hunter RW, Ivy JR, Bailey MA. Glucocorticoids and renal Na+ transport: implications for hypertension and salt sensitivity. J Physiol 2014; 592 (08) 1731-1744
- 150 Przybyciński J, Drożdżal S, Domański L, Dziedziejko V, Pawlik A. Role of endothelial glucocorticoid receptor in the pathogenesis of kidney diseases. Int J Mol Sci 2021; 22 (24) 13295
- 151 Jenniskens M, Weckx R, Dufour T. et al. The hepatic glucocorticoid receptor is crucial for cortisol homeostasis and sepsis survival in humans and male mice. Endocrinology 2018; 159 (07) 2790-2802
- 152 Rose AJ, Berriel Díaz M, Reimann A. et al. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor. Cell Metab 2011; 14 (01) 123-130
- 153 Huang EY, Inoue T, Leone VA. et al. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2015; 21 (05) 963-972
- 154 Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the intestinal epithelial tight junction barrier. Front Immunol 2021; 12: 767456
- 155 Reichardt SD, Amouret A, Muzzi C. et al. The role of glucocorticoids in inflammatory diseases. Cells 2021; 10 (11) 2921
- 156 Sen S, Wang L, Brown M, Wu J, Wei Z, Matveyenko A. Glucocorticoid receptor signaling regulates pancreatic beta-cell circadian transcriptome and function. Diabetes 1773; P; 2023
- 157 Aylward A, Okino M-L, Benaglio P. et al. Glucocorticoid signaling in pancreatic islets modulates gene regulatory programs and genetic risk of type 2 diabetes. PLoS Genet 2020; 17 (05) e1009531
- 158 Swali A, Walker EA, Lavery GG, Tomlinson JW, Stewart PM. 11β-hydroxysteroid dehydrogenase type 1 regulates insulin and glucagon secretion in pancreatic islets. Diabetologia 2008; 51 (11) 2003-2011
- 159 Shen Y, Roh HC, Kumari M, Rosen ED. Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding. Mol Metab 2017; 6 (10) 1150-1160
- 160 Vali A, Dalle H, Loubaresse A. et al. Adipocyte glucocorticoid receptor activation with high glucocorticoid doses impairs healthy adipose tissue expansion by repressing angiogenesis. Diabetes 2023; 73 (02) 211-224
- 161 Dalle H, Garcia M, Antoine B. et al. Adipocyte glucocorticoid receptor deficiency promotes adipose tissue expandability and improves the metabolic profile under corticosterone exposure. Diabetes 2019; 68 (02) 305-317
- 162 Du X-L, Xu WJ, Shi JL. et al. Glucocorticoid receptor alpha targets SLC2A4 to regulate protein synthesis and breakdown in porcine skeletal muscle cells. Biomolecules 2021; 11 (05) 721
- 163 Kuo T, Harris CA, Wang J-C. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol 2013; 380 (1–2): 79-88
- 164 Wang SC, Myers S, Dooms C, Capon R, Muscat GE. An ERRbeta/γ agonist modulates GRalpha expression, and glucocorticoid responsive gene expression in skeletal muscle cells. Mol Cell Endocrinol 2010; 315 (1–2): 146-152
- 165 Abu EO, Horner A, Kušec V, Triffitt JT, Compston JE. The localization of the functional glucocorticoid receptor α in human bone. J Clin Endocrinol Metab 2000; 85 (02) 883-889
- 166 Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 2018; 61 (01) R75-R90
- 167 Pierce J, Sharma A, Roberts R. et al. The glucocorticoid receptor in osterix-expressing cells regulates bone mass, bone marrow adipose tissue, and systemic metabolism in female mice during aging. J Bone Miner Res 2021; 37 (02) 285-302
- 168 Sevilla LM, Latorre V, Sanchis A, Pérez P. Epidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation. J Invest Dermatol 2013; 133 (02) 361-370
- 169 Bayo P, Sanchis A, Bravo A. et al. Glucocorticoid receptor is required for skin barrier competence. Endocrinology 2008; 149 (03) 1377-1388
- 170 Zheng Y, Liu Z, Hu X, Liang Y, Yu J, Shokhirev MN. Glucocorticoid signaling and regulatory T cell collaborate to maintain the hair follicle stem cell niche. J Immunol 2022;
- 171 Stanton SCE, Zilioli S, Briskin JL. et al. Mothers' attachment is linked to their children's anti-inflammatory gene expression via maternal warmth. Soc Psychol Personal Sci 2017; 8 (07) 796-805
- 172 Yamamoto A, Motokura K, Iwanaga K, Niwa F, Takita J, Kawai M. Glucocorticoid receptor expression pattern in very low birth weight infants changes drastically within the first week of life. Horm Res Paediatr 2023; 96 (03) 289-297
- 173 Ozaki T, Yasuoka S, Nakayama T, Tsubura E. Glucocorticoid receptors, in human alveolar macrophages and peripheral blood cells. Clin Exp Immunol 1982; 47 (02) 505-511
- 174 Gillis S, Crabtree GR, Smith KA. Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation. J Immunol 1979; 123 (04) 1624-1631
- 175 Shimba A, Cui G, Tani-Ichi S. et al. Glucocorticoids drive diurnal oscillations in T cell distribution and responses by inducing interleukin-7 receptor and CXCR4. Immunity 2018; 48 (02) 286-298.e6
- 176 Tehseen A, Kumar D, Dubey A, Sarkar R, Singh S, Sehrawat S. Glucocorticoid-mediated suppression of effector programming assists the memory transition of virus-specific CD8+ T cells. J Immunol 2024; 213 (08) 1170-1186
- 177 Cain DW, Bortner CD, Diaz-Jimenez D, Petrillo MG, Gruver-Yates A, Cidlowski JA. Murine glucocorticoid receptors orchestrate B cell migration selectively between bone marrow and blood. J Immunol 2020; 205 (03) 619-629
- 178 Bruscoli S, Biagioli M, Sorcini D. et al. Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood 2015; 126 (15) 1790-1801
- 179 Ehrchen JM, Roth J, Barczyk-Kahlert K. More than suppression: glucocorticoid action on monocytes and macrophages. Front Immunol 2019; 10: 2028
- 180 Diaz-Jimenez D, Petrillo MG, Busada JT, Hermoso MA, Cidlowski JA. Glucocorticoids mobilize macrophages by transcriptionally up-regulating the exopeptidase DPP4. J Biol Chem 2020; 295 (10) 3213-3227
- 181 Achuthan A, Aslam ASM, Nguyen Q. et al. Glucocorticoids promote apoptosis of proinflammatory monocytes by inhibiting ERK activity. Cell Death Dis 2018; 9 (03) 267
- 182 Rozkova D, Horvath R, Bartunkova J, Spisek R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol 2006; 120 (03) 260-271
- 183 Vieira PL, Kaliński P, Wierenga EA, Kapsenberg ML, de Jong EC. Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 1998; 161 (10) 5245-5251
- 184 Cao Y, Bender IK, Konstantinidis AK. et al. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans. Blood 2013; 121 (09) 1553-1562
- 185 Bush KA, Krukowski K, Eddy JL, Janusek LW, Mathews HL. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules. Cell Immunol 2012; 275 (1–2): 80-89
- 186 Liu B, Li Z, Mahesh SP. et al. Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 2008; 283 (13) 8202-8210
- 187 Quatrini L, Wieduwild E, Escaliere B. et al. Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat Immunol 2018; 19 (09) 954-962
- 188 Wallen N, Kita H, Weiler D, Gleich GJ. Glucocorticoids inhibit cytokine-mediated eosinophil survival. J Immunol 1991; 147 (10) 3490-3495
- 189 Meagher LC, Cousin JM, Seckl JR, Haslett C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 1996; 156 (11) 4422-4428
- 190 Hong SG, Sato N, Legrand F. et al. Glucocorticoid-induced eosinopenia results from CXCR4-dependent bone marrow migration. Blood 2020; 136 (23) 2667-2678
- 191 von Lindern M, Zauner W, Mellitzer G. et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 1999; 94 (02) 550-559
- 192 Bauer A, Tronche F, Wessely O. et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 1999; 13 (22) 2996-3002
- 193 Mazzarini M, Cherone J, Nguyen T. et al. The glucocorticoid receptor elicited proliferative response in human erythropoiesis is BCL11A-dependent. Stem Cells 2024; 42 (11) 1006-1022
- 194 Grodzielski M, Cidlowski JA. Glucocorticoids regulate thrombopoiesis by remodeling the megakaryocyte transcriptome. J Thromb Haemost 2023; 21 (11) 3207-3223
- 195 Liverani E, Banerjee S, Roberts W, Naseem KM, Perretti M. Prednisolone exerts exquisite inhibitory properties on platelet functions. Biochem Pharmacol 2012; 83 (10) 1364-1373
- 196 Kim S, Chaudhary PK, Kim S. Role of prednisolone in platelet activation by inhibiting TxA2 generation through the regulation of cPLA2 phosphorylation. Animals (Basel) 2023; 13 (08) 1299
- 197 Gao W, Yang X, Du J. et al. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther 2021; 12 (01) 16
- 198 Lee SR, Kim HK, Song IS. et al. Glucocorticoids and their receptors: insights into specific roles in mitochondria. Prog Biophys Mol Biol 2013; 112 (1–2): 44-54
- 199 Hunter RG, Seligsohn M, Rubin TG. et al. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci U S A 2016; 113 (32) 9099-9104
- 200 Wepler M, Preuss JM, Merz T. et al. Impact of downstream effects of glucocorticoid receptor dysfunction on organ function in critical illness-associated systemic inflammation. Intensive Care Med Exp 2020; 8 (Suppl. 01) 37
- 201 Quatrini L, Ugolini S. New insights into the cell-and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18: 1-10
- 202 Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev 2000; 14 (18) 2314-2329
- 203 Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am 2016; 42 (01) 15-31 , vii
- 204 Heming N, Sivanandamoorthy S, Meng P, Bounab R, Annane D. Immune effects of corticosteroids in sepsis. Front Immunol 2018; 9: 1736
- 205 Polman JAE, Welten JE, Bosch DS. et al. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells. BMC Neurosci 2012; 13 (01) 118
- 206 John S, Sabo PJ, Thurman RE. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011; 43 (03) 264-268
- 207 Vettorazzi S, Nalbantoglu D, Gebhardt JCM, Tuckermann J. A guide to changing paradigms of glucocorticoid receptor function—a model system for genome regulation and physiology. FEBS J 2021
- 208 Steinberg KP, Hudson LD, Goodman RB. et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354 (16) 1671-1684
- 209 G. Umberto Meduri A-MGP, Karin Amreinc, George P. Chrousos. General Adaptation in Critical Illness 2: The Glucocorticoid Signaling System as a Master Rheostat of Homeostatic Corrections in Concerted Action with Mitochondrial and Essential Micronutrient Support. In: Fink G. ed. Handbook of Stress: Stress, Immunology and Inflammation. Elsevier, Academic Press; 2024: 263-287
- 210 Busillo JM, Cidlowski JA. The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 2013; 24 (03) 109-119
- 211 Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J 2012; 26 (12) 4805-4820
- 212 Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid resistance: interference between the glucocorticoid receptor and the MAPK signalling pathways. Int J Mol Sci 2021; 22 (18) 10049
- 213 Hoppstädter J, Diesel B, Linnenberger R. et al. Amplified host defense by toll-like receptor-mediated downregulation of the glucocorticoid-induced leucine zipper (GILZ) in macrophages. Front Immunol 2019; 9: 3111
- 214 Chinenov Y, Rogatsky I. Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol 2007; 275 (1–2): 30-42
- 215 Ricci E, Roselletti E, Gentili M. et al. Glucocorticoid-induced leucine zipper-mediated TLR2 downregulation accounts for reduced neutrophil activity following acute DEX treatment. Cells 2021; 10 (09) 2228
- 216 Gonzales LW, Guttentag SH, Wade KC, Postle AD, Ballard PL. Differentiation of human pulmonary type II cells in vitro by glucocorticoid plus cAMP. Am J Physiol Lung Cell Mol Physiol 2002; 283 (05) L940-L951
- 217 Cruz-Topete D, He B, Xu X, Cidlowski JA. Krüppel-like factor 13 is a major mediator of glucocorticoid receptor signaling in cardiomyocytes and protects these cells from DNA damage and death. J Biol Chem 2016; 291 (37) 19374-19386
- 218 Phuc Le P, Friedman JR, Schug J. et al. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet 2005; 1 (02) e16
- 219 He B, Cruz-Topete D, Oakley RH, Xiao X, Cidlowski JA. Human glucocorticoid receptor β regulates gluconeogenesis and inflammation in mouse liver. Mol Cell Biol 2015; 36 (05) 714-730
- 220 Johnstone III WM, Honeycutt JL, Deck CA, Borski RJ. Nongenomic glucocorticoid effects and their mechanisms of action in vertebrates. Int Rev Cell Mol Biol 2019; 346: 51-96
- 221 Jiang CL, Liu L, Tasker JG. Why do we need nongenomic glucocorticoid mechanisms?. Front Neuroendocrinol 2014; 35 (01) 72-75
- 222 Liu L, Wang YX, Zhou J. et al. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflamm Res 2005; 54 (01) 37-41
- 223 Schmid D, Burmester GR, Tripmacher R, Kuhnke A, Buttgereit F. Bioenergetics of human peripheral blood mononuclear cell metabolism in quiescent, activated, and glucocorticoid-treated states. Biosci Rep 2000; 20 (04) 289-302
- 224 Croxtall JD, van Hal PTW, Choudhury Q, Gilroy DW, Flower RJ. Different glucocorticoids vary in their genomic and non-genomic mechanism of action in A549 cells. Br J Pharmacol 2002; 135 (02) 511-519
- 225 Jiang C-L, Liu L, Li Z, Buttgereit F. The novel strategy of glucocorticoid drug development via targeting nongenomic mechanisms. Steroids 2015; 102: 27-31
- 226 Hafezi-Moghadam A, Simoncini T, Yang Z. et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nat Med 2002; 8 (05) 473-479
- 227 Murata I, Ooi K, Shoji S. et al. Acute lethal crush-injured rats can be successfully rescued by a single injection of high-dose dexamethasone through a pathway involving PI3K-Akt-eNOS signaling. J Trauma Acute Care Surg 2013; 75 (02) 241-249
- 228 Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic effects of glucocorticoids: an updated view. Trends Pharmacol Sci 2019; 40 (01) 38-49
- 229 Fürst R, Schroeder T, Eilken HM. et al. MAPK phosphatase-1 represents a novel anti-inflammatory target of glucocorticoids in the human endothelium. FASEB J 2007; 21 (01) 74-80
- 230 Smoak K, Cidlowski JA. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol Cell Biol 2006; 26 (23) 9126-9135
- 231 Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015; 22 (1–2): 20-32
- 232 Ishmael FT, Fang X, Houser KR. et al. The human glucocorticoid receptor as an RNA-binding protein: global analysis of glucocorticoid receptor-associated transcripts and identification of a target RNA motif. J Immunol 2011; 186 (02) 1189-1198
- 233 Sacta MA, Chinenov Y, Rogatsky I. Glucocorticoid signaling: an update from a genomic perspective. Annu Rev Physiol 2016; 78: 155-180
- 234 Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18 (03) 159-174
- 235 Fadel L, Dacic M, Fonda V. et al. Modulating glucocorticoid receptor actions in physiology and pathology: Insights from coregulators. Pharmacol Ther 2023; 251: 108531
- 236 Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 1984; 5 (01) 25-44
- 237 Yeager MP, Guyre PM, Munck AU. Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol Scand 2004; 48 (07) 799-813
- 238 Galon J, Franchimont D, Hiroi N. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 2002; 16 (01) 61-71
- 239 Biddie SC, John S, Sabo PJ. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2011; 43 (01) 145-155
- 240 Kadiyala V, Sasse SK, Altonsy MO. et al. Cistrome-based cooperation between airway epithelial glucocorticoid receptor and NF-κB orchestrates anti-inflammatory effects. J Biol Chem 2016; 291 (24) 12673-12687
- 241 Sorokin V, Woo CC. Role of Serpina3 in vascular biology. Int J Cardiol 2020; 304: 154-155
- 242 Sánchez-Navarro A, González-Soria I, Caldiño-Bohn R, Bobadilla NA. An integrative view of serpins in health and disease: the contribution of SerpinA3. Am J Physiol Cell Physiol 2021; 320 (01) C106-C118
- 243 Sukkar MB, Xie S, Khorasani NM. et al. Toll-like receptor 2, 3, and 4 expression and function in human airway smooth muscle. J Allergy Clin Immunol 2006; 118 (03) 641-648
- 244 Hermoso MA, Matsuguchi T, Smoak K, Cidlowski JA. Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol 2004; 24 (11) 4743-4756
- 245 Ji J, von Schéele I, Billing B. et al. Effects of budesonide on toll-like receptor expression in alveolar macrophages from smokers with and without COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 1035-1043
- 246 Busillo JM, Azzam KM, Cidlowski JA. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem 2011; 286 (44) 38703-38713
- 247 Hortová-Kohoutková M, Lázničková P, Frič J. How immune-cell fate and function are determined by metabolic pathway choice: the bioenergetics underlying the immune response. BioEssays 2021; 43 (02) e2000067
- 248 Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21 (01) 55-89
- 249 Psarra AM, Sekeris CE. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 2011; 1813 (10) 1814-1821
- 250 Karra AG, Sioutopoulou A, Gorgogietas V, Samiotaki M, Panayotou G, Psarra AG. Proteomic analysis of the mitochondrial glucocorticoid receptor interacting proteins reveals pyruvate dehydrogenase and mitochondrial 60 kDa heat shock protein as potent binding partners. J Proteomics 2022; 257: 104509
- 251 Picard M, McManus MJ, Gray JD. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 2015; 112 (48) E6614-E6623
- 252 Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 2005; 6 (11) 1045-1056
- 253 Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol 2021; 21 (04) 233-243
- 254 Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946; 6: 117-230
- 255 Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: Too much of a good thing may be a problem. Pharmacol Ther 2020; 213: 107589
- 256 Ballegeer M, Vandewalle J, Eggermont M. et al. Overexpression of GILZ protects mice against lethal septic peritonitis. Shock 2019; 52 (02) 208-214
- 257 Ellouze M, Vigouroux L, Tcherakian C. et al. Overexpression of GILZ in macrophages limits systemic inflammation while increasing bacterial clearance in sepsis in mice. Eur J Immunol 2020; 50 (04) 589-602
- 258 Hermus AR, Sweep CG. Cytokines and the hypothalamic-pituitary-adrenal axis. J Steroid Biochem Mol Biol 1990; 37 (06) 867-871
- 259 Perlstein RS, Whitnall MH, Abrams JS, Mougey EH, Neta R. Synergistic roles of interleukin-6, interleukin-1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo. Endocrinology 1993; 132 (03) 946-952
- 260 Mikhaylova IV, Kuulasmaa T, Jääskeläinen J, Voutilainen R. Tumor necrosis factor-alpha regulates steroidogenesis, apoptosis, and cell viability in the human adrenocortical cell line NCI-H295R. Endocrinology 2007; 148 (01) 386-392
- 261 Engström L, Rosén K, Angel A. et al. Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland. Endocrinology 2008; 149 (04) 1436-1450
- 262 Ulrich-Lai YM, Arnhold MM, Engeland WC. Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol 2006; 290 (04) R1128-R1135
- 263 Cai TQ, Wong B, Mundt SS, Thieringer R, Wright SD, Hermanowski-Vosatka A. Induction of 11beta-hydroxysteroid dehydrogenase type 1 but not -2 in human aortic smooth muscle cells by inflammatory stimuli. J Steroid Biochem Mol Biol 2001; 77 (2–3): 117-122
- 264 Dejager L, Vandevyver S, Petta I, Libert C. Dominance of the strongest: inflammatory cytokines versus glucocorticoids. Cytokine Growth Factor Rev 2014; 25 (01) 21-33
- 265 Mahida RY, Lax S, Bassford CR. et al. Impaired alveolar macrophage 11β-hydroxysteroid dehydrogenase type 1 reductase activity contributes to increased pulmonary inflammation and mortality in sepsis-related ARDS. Front Immunol 2023; 14: 1159831
- 266 Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010; 1802 (04) 396-405
- 267 Meduri GU, Tolley EA, Chrousos GP, Stentz F. Prolonged methylprednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. Am J Respir Crit Care Med 2002; 165 (07) 983-991
- 268 Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther 2010; 125 (02) 286-327
- 269 Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 2013; 34 (09) 518-530
- 270 Mascellino MT, Delogu G, Pelaia MR, Ponzo R, Parrinello R, Giardina A. Reduced bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa of blood neutrophils from patients with early adult respiratory distress syndrome. J Med Microbiol 2001; 50 (01) 49-54
- 271 Kaufmann I, Briegel J, Schliephake F. et al. Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Med 2008; 34 (02) 344-349
- 272 Keh D, Boehnke T, Weber-Cartens S. et al. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: a double-blind, randomized, placebo-controlled, crossover study. Am J Respir Crit Care Med 2003; 167 (04) 512-520
- 273 Conway Morris A, Kefala K, Wilkinson TS. et al. C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. Am J Respir Crit Care Med 2009; 180 (01) 19-28
- 274 Meduri GU, Golden E, Freire AX. et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007; 131 (04) 954-963
- 275 Roquilly A, Mahe PJ, Seguin P. et al. Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA 2011; 305 (12) 1201-1209
- 276 Meduri GU. The Bidirectional effect of inflammation on bacterial growth: A new insight into the role of glucocorticorticoids in the resolution of severe infections. In: Eichacker PQ, Pugin J. eds. Evolving Concepts in Sepsis and Septic Shock. 2 ed.. Kluwer Academic Publishers; 2001: 111-127 (Perspectives on Critical Care Infectious Diseases; )
- 277 Yates CR, Vysokanov A, Mukherjee A. et al. Time-variant increase in methylprednisolone clearance in patients with acute respiratory distress syndrome: a population pharmacokinetic study. J Clin Pharmacol 2001; 41 (04) 415-424
- 278 Meduri GU, Kanangat S, Bronze M. et al. Effects of methylprednisolone on intracellular bacterial growth. Clin Diagn Lab Immunol 2001; 8 (06) 1156-1163
- 279 Ehrchen J, Steinmüller L, Barczyk K. et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood 2007; 109 (03) 1265-1274
- 280 Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 2016; 16 (01) 51-67
- 281 Perretti M, D'Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 2009; 9 (01) 62-70
- 282 Vago JP, Nogueira CR, Tavares LP. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J Leukoc Biol 2012; 92 (02) 249-258
- 283 Vago JP, Tavares LP, Garcia CC. et al. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. J Immunol 2015; 194 (10) 4940-4950
- 284 Espinasse M-A, Hajage D, Montravers P. et al. Neutrophil expression of glucocorticoid-induced leucine zipper (GILZ) anti-inflammatory protein is associated with acute respiratory distress syndrome severity. Ann Intensive Care 2016; 6 (01) 105
- 285 Liu Y, Cousin JM, Hughes J. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 1999; 162 (06) 3639-3646
- 286 Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I. Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: implications for the resolution of inflammation. J Endocrinol 2003; 178 (01) 29-36
- 287 McColl A, Bournazos S, Franz S. et al. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J Immunol 2009; 183 (03) 2167-2175
- 288 Hoppstädter J, Hachenthal N, Valbuena-Perez JV. et al. Induction of glucocorticoid-induced leucine zipper (GILZ) contributes to anti-inflammatory effects of the natural product curcumin in macrophages. J Biol Chem 2016; 291 (44) 22949-22960
- 289 Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids shape macrophage phenotype for tissue repair. Front Immunol 2019; 10: 1591
- 290 Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as regulators of macrophage-mediated tissue homeostasis. Front Immunol 2021; 12: 669891
- 291 Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, Ariel A. Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol 2011; 41 (02) 366-379
- 292 Gilmour JS, Coutinho AE, Cailhier JF. et al. Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J Immunol 2006; 176 (12) 7605-7611
- 293 Chapman KE, Coutinho A, Gray M, Gilmour JS, Savill JS, Seckl JR. Local amplification of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 and its role in the inflammatory response. Ann N Y Acad Sci 2006; 1088: 265-273
- 294 Barczyk K, Ehrchen J, Tenbrock K. et al. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 2010; 116 (03) 446-455
- 295 Ariel A, Serhan CN. New lives given by cell death: macrophage differentiation following their encounter with apoptotic leukocytes during the resolution of inflammation. Front Immunol 2012; 3: 4
- 296 Derfoul A, Perkins GL, Hall DJ, Tuan RS. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 2006; 24 (06) 1487-1495
- 297 Oshina H, Sotome S, Yoshii T. et al. Effects of continuous dexamethasone treatment on differentiation capabilities of bone marrow-derived mesenchymal cells. Bone 2007; 41 (04) 575-583
- 298 Yan B, Yang J, Xie Y, Tang X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ J 2021; 14 (03) 100521
- 299 Yang J, Yang J. Association between blood eosinophils and mortality in critically ill patients with acute exacerbation of chronic obstructive pulmonary disease: a Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2021; 16: 281-288
- 300 Wechsler ME, Munitz A, Ackerman SJ. et al. Eosinophils in health and disease: a state-of-the-art review. Elsevier; 2021: 2694-2707
- 301 Jackson DJ, Akuthota P, Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev 2022; 31 (163) 210150
- 302 Druilhe A, Létuvé S, Pretolani M. Glucocorticoid-induced apoptosis in human eosinophils: mechanisms of action. Apoptosis 2003; 8 (05) 481-495
- 303 Hallsworth MP, Litchfield TM, Lee TH. Glucocorticoids inhibit granulocyte-macrophage colony-stimulating factor-1 and interleukin-5 enhanced in vitro survival of human eosinophils. Immunology 1992; 75 (02) 382-385
- 304 Altman LC, Hill JS, Hairfield WM, Mullarkey MF. Effects of corticosteroids on eosinophil chemotaxis and adherence. J Clin Invest 1981; 67 (01) 28-36
- 305 Bafadhel M, McKenna S, Terry S. et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med 2012; 186 (01) 48-55
- 306 Sivapalan P, Lapperre TS, Janner J. et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir Med 2019; 7 (08) 699-709
- 307 Liang L, Lin Y, Feng L. et al. Multicentre double-blind randomised controlled trial of systematic corticosteroid therapy in patients with acute exacerbations of chronic obstructive pulmonary disease admitted to hospital with higher eosinophil levels: the ECHO protocol. BMJ Open 2023; 13 (05) e066354
- 308 Quirce S, Cosío BG, España A. et al. Management of eosinophil-associated inflammatory diseases: the importance of a multidisciplinary approach. Front Immunol 2023; 14: 1192284
- 309 Jacobsen EA, Jackson DJ, Heffler E. et al. Eosinophil knockout humans: uncovering the role of eosinophils through eosinophil-directed biological therapies. Annu Rev Immunol 2021; 39 (01) 719-757
- 310 Jackson DJ, Pavord ID. Living without eosinophils: evidence from mouse and man. Eur Respir J 2023; 61 (01) 2201217
- 311 Kanda A, Yun Y, Bui DV. et al. The multiple functions and subpopulations of eosinophils in tissues under steady-state and pathological conditions. Allergol Int 2021; 70 (01) 9-18
- 312 Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24 (12) 858-877
- 313 Meduri GU, Lannini S, Smith J. Limitations in the design of critical care studies and suggestions for future research directions. Review Semin Respir Crit Care Med 2026 ; In press
- 314 Meduri GU. Factors influencing glucocorticoid treatment Response: mechanism-based strategies to overcome glucocorticoid resistance and restore GRα function. Semin Respir Crit Care Med 2025 (e-pub ahead of print)