References and Notes
<A NAME="RD34608ST-1">1</A> For a recent review on this topic,
see:
Calaza MI.
Cativiela C.
Eur. J. Org. Chem.
2008,
3427
<A NAME="RD34608ST-2">2</A>
Seebach D.
Sting AR.
Hoffmann M.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
2708
<A NAME="RD34608ST-3">3</A>
Baeza JL.
Gerona-Navarro G.
Pérez de Vega MJ.
García-López MT.
Gonzàles-Muñiz R.
Martín-Martínez M.
Tetrahedron
Lett.
2007,
48:
3689
<A NAME="RD34608ST-4">4</A>
Gerona-Navarro G.
Bonache MA.
Alías M.
Pérez de Vega MJ.
García-López MT.
Cativiela C.
Gonzàles-Muñiz R.
Tetrahedron Lett.
2004,
45:
2193
<A NAME="RD34608ST-5">5</A>
Gerona-Navarro G.
García-López MT.
Gonzàles-Muñiz R.
J.
Org. Chem.
2002,
67:
3953
<A NAME="RD34608ST-6">6</A>
Kawabata T.
Matsuda S.
Kawakami S.
Monguchi D.
Moriyama K.
J.
Am. Chem. Soc.
2006,
128:
15394
<A NAME="RD34608ST-7">7</A>
Couty F.
Evano G.
Prim D.
Mini-Rev.
Org. Chem.
2004,
1:
133
<A NAME="RD34608ST-8">8</A>
Couty F.
Evano G.
Org. Prep. Proced. Int.
2006,
38:
427
<A NAME="RD34608ST-9A">9a</A>
Couty F.
Evano G.
Vargas-Sanchez M.
Bouzas G.
J.
Org. Chem.
2005,
70:
9028
<A NAME="RD34608ST-9B">9b</A>
Braüner-Osborne H.
Bunch L.
Chopin N.
Couty F.
Evano G.
Jensen AA.
Kusk M.
Nielsen B.
Rabasso N.
Org. Biomol.
Chem.
2005,
3:
3926
<A NAME="RD34608ST-9C">9c</A>
Mangaleshwaran S.
Couty F.
Evano G.
Srinivas B.
Sridhar R.
Rama Rao K.
ARKIVOC
2007,
(x):
71
<A NAME="RD34608ST-10A">10a</A>
Couty F.
David O.
Larmanjat B.
Marrot J.
J. Org. Chem.
2006,
72:
1058
<A NAME="RD34608ST-10B">10b</A>
Alex A.
Larmanjat B.
Marrot J.
Couty F.
David O.
Chem.
Commun.
2007,
2500
<A NAME="RD34608ST-11">11</A>
Glaeske KW.
West FG.
Org. Lett.
1999,
1:
31
<A NAME="RD34608ST-12">12</A>
Lumini M.
Cordero FM.
Pisanechi F.
Brandi A.
Eur. J. Org. Chem.
2008,
2817
<A NAME="RD34608ST-13">13</A>
Khlebnikov AF.
Novikov MS.
Kostikov RR.
Russ. Chem. Rev.
2005,
74:
171
<A NAME="RD34608ST-14">14</A>
Couty F.
Durrat F.
Evano G.
Prim D.
Tetrahedron Lett.
2004,
45:
7525
<A NAME="RD34608ST-15">15</A>
Agami C.
Couty F.
Evano G.
Tetrahedron:
Asymmetry
2002,
297
<A NAME="RD34608ST-16">16</A>
Beard CD.
Baum K.
Grakauskas V.
J.
Org. Chem.
1973,
38:
3673
<A NAME="RD34608ST-17">17</A>
Compounds 17 and 20 were obtained as a 6:4 ratio of epimers
by anionic cyclization of the corresponding chloride, obtained following
a similar synthetic sequence as the one described in Scheme
[¹]
. Compound 22 was
obtained as the major epimer (7:3 ratio) following Scheme
[¹]
.
<A NAME="RD34608ST-18">18</A>
Couty F.
Durrat F.
Prim D.
Tetrahedron
Lett.
2003,
44:
5209
<A NAME="RD34608ST-19">19</A>
This ester was prepared by reaction
of the corresponding nitrile (ref. 9a) in a mixture of EtOH-H2SO4 (yield
83%).
<A NAME="RD34608ST-20">20</A>
Drouillat B.
Couty F.
David O.
Evano G.
Marrot J.
Synlett
2008,
1345
<A NAME="RD34608ST-21">21</A>
Couty F.
Durrat F.
Evano G.
Marrot J.
Eur. J. Org. Chem.
2006,
4214
<A NAME="RD34608ST-22">22</A>
Cospito G.
Illuminati G.
Lilloci C.
Petride H.
J. Org. Chem.
1981,
46:
2944
<A NAME="RD34608ST-23">23</A>
The crystal structure data have been
deposited at the Cambridge Crystallographic Data Centre and allocated
the deposition number CCDC 703601.
<A NAME="RD34608ST-24">24</A> For a recent review on the reductive
decyanation, see:
Mattalia J.-M.
Marci-Delapierre C.
Hazimeh H.
Chanon M.
ARKIVOC
2006,
(iv):
90
<A NAME="RD34608ST-25">25</A>
General Procedure
for Rearrangement of Azetidinium Triflates
The following
procedure for the preparation of azetidine 13 is
representative. To a solution of azetidinium triflate 10 (823 mg, 2.19 mmol) in dry THF (40 mL),
cooled at -78 ˚C was added in one portion
KOt-Bu (300 mg, 2.67 mmol). The reaction
mixture was allowed to reach 0 ˚C over 3 h and
was quenched by addition of H2O and Et2O.
The reaction mixture was extracted with Et2O, the combined
organic layers were washed with brine, dried over MgSO4,
and concentrated under reduced pressure. The crude residue was examined
by ¹H NMR and showed a diastereomeric ratio
of 98:2. Purification by flash chromatography (cyclohexane-EtOAc, 8:2)
gave 13 as a colorless oil (461mg, 93%).
Selected Data
Compound 13: R
f
= 0.48
(cyclohexane-EtOAc, 8:2); [α]D
²5 -13.1
(c 0.33, CHCl3). ¹H
NMR (300 MHz,CDCl3): δ = 1.42 (d, J = 6.6 Hz,
3 H, Me), 2.01-2.12 (m, 1 H, CHHCH=CH2), 2.21-2.32
(m, 1 H, CHHCH=CH2),
2.42 (s, 3 H, NMe),
3.65 (d, J = 5.4
Hz, 1 H, H3), 3.80 (q, J = 5.5
Hz, 1 H, H4), 4.85-5.03 (m, 2 H, CHHCH=CH
2), 5.35-5.52 (m,
1 H, CHHCH=CH2),
7.23-7.35 (m, 5 H, Ar). ¹³C
NMR (75 MHz, CDCl3): δ = 17.2 (CH3),
33.9 (NMe), 36.3 (CH2), 53.3 (C3), 61.9 (C4), 64.9 (C2),
119.9 (CN), 121.1 (CH=CH2),
126.9, 128.3, 129.1 (CHAr), 131.0 (CH=CH2),
135.6 (CqAr). MS (CI, NH3): m/z = 227.1
(100) [MH+], 200.2 (50) [MH+ - HCN].
Compound 14; yield 73%, colorless oil; R
f
= 0.34
(pentane-EtOAc, 9:1); [α]D
²5 -64
(c 1, CH2Cl2). ¹H
NMR (300 MHz, CDCl3): δ = 1.17 (d, J = 5.8 Hz,
3 H, Me), 2.38 (s, 3 H, NMe), 2.58 (appt. d, J = 5.3
Hz, 2 H, CH
2
CH=CH2),
3.15
(d, J = 9.1
Hz, 1 H, H3), 3.35 (q, J = 5.8
Hz, 1 H, H4),
5.11-5.22 (m, 2 H, CHHCH=CH
2), 5.70-5.84 (m,
1 H, CHHCH=CH2),
7.12-7.21 (m, 5 H, Ar). ¹³C
NMR (75 MHz, CDCl3 MHz): δ = 19.6 (CH3),
37.9 (NMe), 43.8 (CH2), 53.9 (C3), 63.5 (C4), 71.2 (C2),
117.2 (CN), 120.2 (CH=CH2), 127.8,
128.3, 128.6 (CHAr), 130.9 (CH=CH2),
135.3 (CqAr). MS (CI, NH3): m/z = 227.1
(100) [MH+], 200.2 (35) [MH+ - HCN].