Zusammenfassung
Chronisch entzündliche Atemwegserkrankungen wie Asthma bronchiale und die chronisch
obstruktive Lungenerkrankung (COPD) können nach den gegenwärtigen Forschungsergebnissen
weder als eine rein immunologische noch als eine ausschließlich neuronale Erkrankung
angesehen werden [1 ]
[2 ]. Die entzündlichen Veränderungen werden von einer Vielzahl an immunologischen und
neuronalen Mediatoren hervorgerufen und beeinflusst. Im Bereich der Pathophysiologie
und Pathobiochemie des Asthma bronchiale sowie der COPD sind bereits über fünfzig
Mediatoren mit verschiedenen Effekten verschiedenste pulmonale Funktionen beschrieben
worden. Die Mediatoren werden dabei von Entzündungszellen, wie Mastzellen, Eosinophilen,
Basophilen, Neutrophilen oder T-Lymphozyten, gebildet. Weiterhin gehören auch andere
Zellen, wie Epithelzellen, Endothelzellen, Myozyten oder Atemwegsneurone, zu den Mediator-bildenden
und freisetzenden Zellen. Neben den klassischen Mediatoren Noradrenalin in postganglionären
sympathischen Nervenfasern und Acetylcholin in parasympathischen Nervenfasern existiert
eine Reihe von Neuropeptiden, die ausgeprägte pharmakologische Effekte auf den Muskeltonus
der Blutgefäße und der Bronchien, die Drüsenfunktion und auf Entzündungs- und Immunzellen
hat. Diese Neuropeptide gehören zu keinem morphologisch eingrenzbaren System. Diese
Neuropeptide werden unter dem Begriff des nicht-adrenergen nicht-cholinergen (NANC)-Systems
zusammengefasst. Die Rolle des Nervensystems in Bezug auf die asthmatische oder chronisch
obstruktive Erkrankung wurde bisher sehr unterschiedlich gewichtet und bewertet. Sehr
früh begann man sich für das Nervensystem der menschlichen Lunge zu interessieren
und es anatomisch detailliert zu beschreiben [3 ]
[4 ]
[5 ], da ein Zusammenhang zwischen dem Nervensystem und der Pathophysiologie des Asthma
bronchiale und der COPD vermutet wurde. Seitdem wurden unterschiedliche Aspekte des
Nervensystems untersucht. Etablierte Pharmakotherapiekonzepte mit Anticholinergika,
wie Ipratropiumbromid (Atrovent® ) oder Tiotropiumbromid (Spiriva® ), bestehen darin, durch einen kompetitiven Antagonismus die Effekte des natürlichen
Überträgerstoffes an den cholinergen Neuronen zu hemmen und damit die Erschlaffung
der glatten Muskulatur der Bronchien zu erreichen. Die effektivsten Bronchodilatatoren
sind die β2-Sympathomimetika (Sabutamol), welche effektiv die Freisetzung von Acetylcholin
aus cholinergen Neuronen hemmen und gleichzeitig die β2-Rezeptoren an den motorischen
Endplatten der Muskelzellen stimulieren. Dieser Wirkungsmechanismus führt zu einer
Bronchodilatation durch Relaxation der glatten Muskulatur. Über die weitere Rolle
des Nervensystems bei den chronisch obstruktiven Lungenerkrankungen des Menschen ist
aber bisher nur wenig bekannt. Wegen der Komplexität der neuroimmunologischen Interaktion
beim Asthma bronchiale und der COPD muss in Zukunft weitere Forschung zum Verständnis
der Rolle der Atemwegsinnervation und deren Aktivierung und Interaktion mit Entzündungszellen
unternommen werden. Dieser Artikel gibt eine Übersicht über die bisherigen Erkenntnisse
der neuronalen Kontrolle der beiden großen obstruktiven Atemwegserkrankungen.
Abstract
Airway nerves have the capacity to control airway functions via neuronal reflexes
and through neuromediators and neuropeptides. Neuronal mechanisms are known to play
a key role in the initiation and modulation of airway hyperresponsiveness and inflammation.
Therefore, the nerve fibres may contribute to airway narrowing in asthma and COPD.
In addition to the traditional transmitters such as norepinephrine in postganglionic
sympathetic nerve fibres and acetylcholine in parasympathetic nerve fibres, a large
number of neuropeptides have been identified to have different pharmacological effects
on the muscle tone of the vessels and bronchi, mucus secretion and immune cells. Meanwhile,
a broad range of stimuli including capsaicin, bradykinin, hyperosmolar saline, tobacco
smoke, allergens, ozone, inflammatory mediators and even cold, dry air have been shown
to activate sensory nerve fibres to release neuropeptides such as the tachykinins
substance P (SP) and neurokinin A (NKA) to mediate neurogenic inflammation. Different
aspects of the neurogenic inflammation have been well studied in animal models of
chronic airway inflammation and anticholinergic agents such as ipratropium bromide
(Atrovent® ) and tiotropium bromide (Spiriva® ) have been proved to be important when used as bronchodilators for the treatment
of obstructive airway diseases such as COPD. However, little is known about the role
of neurogenic airway inflammation in human diseases. In this review, we address the
current knowledge of the airway sensory nerves in human asthma and COPD.
Literatur
1
Barnes P J.
Asthma as an axon reflex.
Lancet.
1986;
1
242-245
2
Barnes P J.
Mediators of chronic obstructive pulmonary disease.
Pharmacol Rev.
2004;
56
515-548
3 Willis T. Cap. XI: Opera omnia. De asthmate. Band II, Sect. 1 1681
4
Lundberg J M, Hemsen A, Larsson O et al.
Neuropeptide Y receptor in pig spleen: binding characteristics, reduction of cyclic
AMP formation and calcium antagonist inhibition of vasoconstriction.
Regul Pept.
1988;
20
125-139
5
Kummer W, Fischer A, Kurkowski R et al.
The sensory and sympathetic innervation of guinea-pig lung and trachea as studied
by retrograde neuronal tracing and double-labelling immunohistochemistry.
Neuroscience.
1992;
49
715-737
6
Pisi G, Olivieri D, Chetta A.
The airway neurogenic inflammation: Clinical and pharmacological implications.
Inflamm Allergy Drug Targets.
2009;
8
176-181
7
Mann S P.
The innervation of mammalian bronchial smooth muscle: The localization of catecholamines
and cholinesterase.
Histochemistry.
1971;
3
319-331
8
Doidge J M, Satchell D G.
Adrenergic and nonadrenergic inhibitory nerves in mammalian airways.
J Auton Nervous System.
1982;
5
83-99
9
Van der Velden V H, Hulsmann A R.
Autonomic innervation of human airways: structure, function, and pathophysiology in
asthma.
Neuroimmunomodulation.
1999;
6
145-159
10
Sheppard M N, Kurian S S, Henzen-Logmans S C et al.
Neurone-specific enolase and S-100: new markers for delineating the innervation of
the respiratory tract in man and other mammals.
Thorax.
1983;
38
333-340
11
Barnes P J, Chung K F, Page C P et al.
Inflammatory mediators of asthma: an update.
Pharmacol Rev.
1998;
50
515-596
12
Kim Y D, Lee S H, Lee S Y et al.
The effect of thoracosopic thoracic sympathetomy on pulmonary function and bronchial
hyperresponsiveness.
J Asthma.
2009;
46
276-279
13
Barnes P, Karliner J, Hamilton C et al.
Demonstration of alpha 1-adrenoceptors in guinea pig lung using 3H-prazosin.
Life Sci.
1979;
25
1207-1214
14
Lundberg J M, Terenius L, Hokfelt T et al.
High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals
including man.
Neurosci Lett.
1983;
42
167-172
15
Uddman R, Sundler F, Emson P.
Occurrence and distribution of neuropeptide-Y-immunoreactive nerves in the respiratory
tract and middle ear.
Cell Tissue Res.
1984;
237
321-327
16
Bowden J J, Gibbins I L.
Vasoactive intestinal peptide and neuropeptide Y coexist in non-noradrenergic sympathetic
neurons to guinea pig trachea.
J Auton Nerv Syst.
1992;
38
1-19
17
Fischer A, Mundel P, Mayer B et al.
Nitric oxide synthase in guinea pig lower airway innervation.
Neurosci Lett.
1993;
149
157-160
18
Myers A, Weinreich D, Undem B J et al.
A reidentifiable parasympathetic ganglion on the bronchus of the guinea pig: anatomical
and electrophysiological characteristics.
Fedii Am Socs exp Biol J.
1988;
2
A1056
19
Myers A C, Undem B J, Weinreich D.
Electrophysiological properties of neurons in guinea pig bronchial parasympathetic
ganglia.
Am J Physiol.
1990;
259
L403-L409
20
Kalia M, Mesulam M M.
Brainstem projections of sensory and motor components of the vagus complex in the
cat: II. Laryngeal tracheobronchial, pulmonary, cardial and gastrointestinal branches.
J comp Neurol.
1980;
193
467-508
21
Kalia M, Mesulam M M.
Brain stem projections of sensory and motor components of the vagus complex in the
cat: I. The cervical vagus and nodose ganglion.
J Comp Neurol.
1980;
193
435-465
22
Partanen M, Laitinen A, Hervonen A et al.
Catecholamine- and acetylcholinesterase-containing nerves in human lower respiratory
tract.
Histochemistry.
1982;
76
175-188
23
Lundberg J M, Hokfelt T, Martling C R et al.
Substance P-immunoreactive sensory nerves in the lower respiratory tract of various
mammals including man.
Cell Tissue Res.
1984;
2352
251-261
24
Canning B J, Fischer A.
Localization of cholinergic nerves in lower airways of guinea pigs using antisera
to choline acetyltransferase.
Am J Physiol.
1997;
272
L731-L738
25
Dey R D, Shannon W A, Said S T et al.
Localization of VIP-immunoreactive nerves in airways and pulmonary vessels of dogs,
cat, and human subjects.
Cell Tissue Res.
1981;
220
231-238
26
Fischer A, Canning B J, Kummer W.
Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline
acetyltransferase in the airway innervation.
Ann N Y Acad Sci.
1996a;
805
717-722
27
Dey R, Hoffpauir J, Said S I.
Co-localisation of vasoacitve intestinal peptide- and substance P-containing nerves
in cat bronchi.
Neuroscience.
1988;
24
275-281
28
Fontan J J, Cortright D N, Krause J E et al.
Substance P and neurokinin-1 receptor expression by intrinsic airway neurons in the
rat.
Am J Physiol Lung Cell Mol Physiol.
2000;
278
L344-L355
29
Nohr D, Eiden L E, Weihe E.
Coexpression of vasoactive intestinal peptide, calcitonin gene-related peptide and
substance P immunoreactivity in parasympathetic neurons of the rhesus monkey lung.
Neurosci Lett.
1995;
199
25-28
30
Shimosegawa T, Foda H D, Said S I.
[Met]enkephalin-Arg6-Gly7-Leu8-immunoreactive nerves in guinea-pig and rat lungs:
distribution, origin, and co-existence with vasoactive intestinal polypeptide immunoreactivity.
Neuroscience.
1990;
36
737-750
31
Ricco M M, Kummer W, Biglari B et al.
Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig
airways.
J Physiol (Lond).
1996;
496
521-530
32
Barnes P J.
Neurogenic inflammation in the airways.
Respir Physiol.
2001;
125 – 2
145-154
33
Kuo Y L, Lai C J.
Ovalbumin sensitizes vagal pulmonary C-fiber afferents in Brown Norway rats.
J Appl Physiol.
2008;
105
611-620
34
Taylor-Clark T E, McAlexander M A, Nassenstein C.
Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary
C-fibres by the endogenous autacoid 4-oxononenal.
J Physiol.
2008;
15; 586
3447-3459
35
Solway J, Leff A R.
Sensory neuropeptides and airway function.
J Appl Physiol.
1991;
71
2077-2087
36
Verastegui C, Prada Oliveira A, Fernandez-Vivero J et al.
Calcitonin gene-related peptide immunoreactivity in adult mouse lung.
Eur J Histochem.
1997;
41
119-126
37
Dinh Q T, Groneberg D A, Witt C et al.
Expression of Tyrosine Hydroxylase and Neuropeptide Tyrosine in Mouse Sympathetic
Airway-specific Neurons under Normal Situation and Allergic Airway Inflammation.
Clin Exp Allergy.
2004;
34
1934-1941
38
Kummer W, Bachmann S, Neuhuber W L et al.
Tyrosine-hydroxylase-containing vagal afferent neurons in the rat nodose ganglion
are independent from neuropeptide-Y-containing populations and project to esophagus
and stomach.
Cell Tissue Res.
1993;
271
135-144
39
Coburn R F, Tomita T.
Evidence for nonadrenergic inhibitory nerves in the guinea pig trachealis muscle.
Am J Physiol.
1973;
224
1072-1080
40
Gosens R, Zaagsma J, Meurs H, Halayko A J.
Muscarinic receptor signaling in the pathophysiology of asthma and COPD.
Respir Res.
2006;
9; 7
73
41
Gross N J.
Anticholinergic agents in asthma and COPD.
Eur J Pharmacol.
2006;
533
36-39
42
Belmonte K E.
Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive
pulmonary disease.
Proc Am Thorac Soc.
2005;
2
297-304
43
Gross N J, Skorodin M S.
Role of the parasympathetic system in airway obstruction due to emphysema.
N Engl J Med.
1984;
16; 311
421-425
44
Kummer W, Lips K S, Pfeil U.
The epithelial cholinergic system of the airways.
Histochem Cell Biol.
2008;
130
219-234
45
Boichot E, Lagente V, Paubert-Braquet M et al.
Inhaled substance P induces activation of alveolar macrophages and increases airway
responses in the guinea-pig.
Neuropeptides.
1993;
25
307-313
46
Widdicombe J G.
Autonomic regulation. i-NANC/e-NANC.
Am J Respir Crit Care Med.
1998;
158
171-175
47
Karlsson J A, Finney M J, Persson C G et al.
Substance P antagonists and the role of tachykinins in non-cholinergic bronchoconstriction.
Life Sci.
1984;
35
2681-2691
48
Li C G, Rand M J.
Evidence that part of the NANC relaxant response of guinea-pig trachea to electrical
field stimulation is mediated by nitric oxide.
Br J Pharmacol.
1991;
102
91-94
49
Chang M, Leeman S E, Niall H D.
Amino-acid sequence of substance P.
Nat New Biol.
1971;
232
86-87
50
Tatemoto K, Lundberg J M, Jornvall H, Mutt V.
Neuropeptide K: isolation, structure and biological activities of a novel brain tachykinin.
Biochem Biophys Res Commun.
1985;
128
947-953
51
Kage R, McGregor G P, Thim L et al.
Neuropeptide-gamma: a peptide isolated from rabbit intestine that is derived from
gamma-preprotachykinin.
J Neurochem.
1988;
50
1412-1417
52
Kotani Y, Hirota Y, Suguyama K et al.
Effects of noxious stimuli and anesthetic agents on substance P content in rat central
nervous system.
Jpan J Pharmacol.
1986;
40
143-147
53
Groneberg D A, Harrison S, Dinh Q T et al.
Tachykinins in the respiratory tract.
Curr Drug Targets.
2006;
7
1005-1010
54
Hua X Y, Theodorsson-Norheim E, Brodin E et al.
Multiple tachykinins (neurokinin A, neuropeptide K and substance P) in capsaicin-sensitive
sensory neurons in the guinea-pig.
Regul Pept.
1985;
3
1-19
55
Dinh Q T, Groneberg D A, Peiser C et al.
Expression of substance P and nitric oxide synthase in vagal sensory neurons innervating
the mouse airways.
Regul Pept.
2005;
126
189-194
56
Dinh Q T, Groneberg D A, Peiser C et al.
Nerve growth factor-induced substance P in capsaicin-insensitive vagal neurons innervating
the lower mouse airway.
Clin Exp Allergy.
2004;
34
1474-1479
57
Helke C J, Krause J E, Mantyh P W et al.
Diversity in mammalian tachykinin peptidergic neurons: multiple peptides, receptors,
and regulatory mechanisms.
Faseb J.
1990;
4
1606-1615
58
Komatsu T, Yamamoto M, Shimokata K et al.
Distribution of substance P-immunoreactive and calcitonin gene-related peptide-immunoreactive
nerves in normal human lungs.
Int Arch Allergy Appl Immunol.
1991;
95
23-28
59
Joos G F, Germonpré P R, Pauwels R A.
Role of tachykinins in asthma.
Allergy.
2000;
55
321-337
60
Hua X Y, Theodorsson-Norheim E, Lundberg J M et al.
Co-localization of tachykinins and calcitonin gene-related peptide in capsaicin-sensitive
afferents in relation to motility effects on the human ureter in vitro.
Neuroscience.
1987;
23
693-703
61
Van Rossum D, Hanisch U K, Quirion R.
Neuroanatomical localization, pharmacological characterization and functions of CGRP,
related peptides and their receptors.
Neurosci Biobehav Rev.
1997;
21
649-678
62
Adriaensen D, Scheuermann D W, Gajda M et al.
Functional implications of extensive new data on the innervation of pulmonary neuroepithelial
bodies.
Ital J Anat Embryol.
2001;
106
395-403
63
Van Rossum D, Hanisch U K, Quirion R.
Neuroanatomical localization, pharmacological characterization and functions of CGRP,
related peptides and their receptors.
Neurosci Biobehav Rev.
1997;
21
649-678
64
Springer J, Geppetti P, Fischer A.
Calcitonin gene-related peptide as inflammatory mediator.
Pulm Pharmacol Ther.
2003;
16
121-130
65
Kajekar R, Myers A C.
Calcitonin gene-related peptide affects synaptic and membrane properties of bronchial
parasympathetic neurons.
Respir Physiol Neurobiol.
2008;
1; 160
28-36
66
Tsukiji J, Sango K, Udaka N.
Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation.
Life Sci.
2004;
26; 76
163-177
67
Groneberg D A, Rabe K F, Fischer A.
Novel concepts of neuropeptide-based drug therapy: vasoactive intestinal polypeptide
and its receptors.
Eur J Pharmacol.
2006;
8; 533
182-194
68
Aizawa H, Inoue H, Shigyo M et al.
VIP antagonists enhance excitatory cholinergic neurotransmission in the human airway.
Lung.
1994;
172
159-167
69
Cardell L O, Uddman R, Edvinsson L.
Low plasma concentrations of VIP and elevated levels of other neuropeptides during
exacerbations of asthma.
Eur Respir J.
1994;
7
2169-2173
70
Schmidt D T, Rühlmann E, Waldeck B et al.
The effect of the vasoactive intestinal polypeptide agonist Ro 25 – 1553 on induced
tone in isolated human airways and pulmonary artery.
Naunyn Schmiedebergs Arch Pharmacol.
2001;
364
314-320
71
Kinhult J, Uddman R, Cardell L O.
The induction of carbon monoxide-mediated airway relaxation by PACAP 38 in isolated
guinea pig airways.
Lung.
2001;
179
1-8
72
Yoshihara Y, Tsukazaki T, Osaki M et al.
Altered expression of inflammatory cytokines in primary osteoarthritis by human T
lymphotropic virus type I retrovirus infection: a cross-sectional study.
Arthritis Res Ther.
2004;
6
R347-R354
73
Onoue S, Ohmori Y, Endo K et al.
Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide
attenuate the cigarette smoke extract-induced apoptotic death of rat alveolar L2 cells.
Eur J Biochem.
2004;
271
1757-1767
74
Tatemoto K, Carlquist M, Mutt V.
Neuropeptide Y- a novel brain peptide with structural similarities to peptide YY and
pancreatic polypeptide.
Nature.
1982;
296
659-660
75
Verastegui C, Fernandez-Vivero J, Prada A et al.
Presence and distribution of 5HAT-,VIP-, NPY-, and SP-immunoreactive structures in
adult mouse lung.
Histol Histopathol.
1997;
12
909-918
76
Bing C, King P, Pickavance L et al.
The effect of moxonidine on feeding and body fat in obese Zucker rats: role of hypothalamic
NPY neurones.
Br J Pharmacol.
1999;
127
35-42
77 Lundberg J M, Modlin A. Neuropeptid Y in the airways. Neuropeptides in Respiratory
Medicine. New York: Marcel Dekker; 1994: 161-172
78
De Jongste J C, Jongejan R C, Kerrebijn K F.
Control of airway caliber by autonomic nerves in asthma and in chronic obstructive
pulmonary disease.
Am Rev Respir Dis.
1991;
143
1421-1426
79
Lacroix J S, Mosimann B L.
Attenuation of allergen-evoked nasal responses by local pretreatment with exogenous
neuropeptide Y in atopic patients.
J Allergy Clin Immunol.
1996;
98
611-616
80
Cardell L O, Uddman R, Edvinsson L.
Low plasma concentrations of VIP and elevated levels of other neuropeptides during
exacerbations of asthma.
Eur Respir J.
1994;
7
2169-2173
81
Chanez P, Springall D, Vignola A M et al.
Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases.
Am J Respir Crit Care Med.
1998;
158
985-990
82
Fischer A, McGregor G P, Saria A et al.
Induction of tachykinin gene and peptide expression in guinea pig nodose primary afferent
neurons by allergic airway inflammation.
J Clin Invest.
1996;
98
2284-2291
83
Undem B J, Hunter D D, Liu M et al.
Allergen-induced sensory neuroplasticity in airways.
Int Arch Allergy Immunol.
1999;
118
150-153
84
Myers A C, Kajekar R, Undem B J.
Allergic inflammation-induced neuropeptide production in rapidly adapting afferent
nerves in guinea pig airways.
Am J Physiol Lung Cell Mol Physiol.
2002;
282
L775-L781
85
Dinh Q T, Mingomataj E, Quarcoo D et al.
Allergic airway inflammation induces tachykinin peptides expression in vagal sensory
neurons innervating mouse airways.
Clin Exp Allergy.
2005;
35
820-825
86
Quarcoo D, Schulte-Herbruggen O, Lommatzsch M et al.
Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent
mechanism in a transgenic animal model of allergic airway inflammation.
Clin Exp Allergy.
2004;
34
1146-1151
87
Kollarik M, Dinh Q T, Fischer A et al.
Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse.
J Physiol.
2003;
15
869-879
88
Michael G J, Averill S, Nitkunan A et al.
Nerve growth factor treatment increases brain-derived neurotrophic factor selectively
in TrkA-expressing dorsal root ganglion cells and in their central terminations within
the spinal cord.
J Neurosci.
1997;
17
8476-8490
89
Dinh Q T, Groneberg D A, Peiser C et al.
Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating
the mouse lung.
Respir Physiol Neurobiol.
2004;
144
15-24
90
De Vries A, Engels F, Henricks P A et al.
Airway hyper-responsiveness in allergic asthma in guinea-pigs is mediated by nerve
growth factor via the induction of substance P: a potential role for trkA.
Clin Exp Allergy.
2006;
36
1192-1200
91
Barnes P J.
Neurogenic inflammation in the airways.
Respir Physiol.
2001;
125
145-154
92
Jancso N, Jancso-Gabor A, Szolcsanyi J.
Direct evidence for neurogenic inflammation and its prevention by denervation and
by pretreatment with capsaicin.
Br J Pharmacol Chemother.
1967;
31
138-151
93
Trevisani M, Smart D, Gunthorpe M J et al.
Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1.
Nat Neurosci.
2002;
5
546-551
94
Trevisani M, Gazzieri D, Benvenuti F et al.
Ethanol Causes Inflammation in the Airways by a Neurogenic and TRPV1-Dependent Mechanism.
J Pharmacol Exp Ther.
2004;
309
1167-1173
95
Dinh Q T, Klapp B F, Fischer A.
Die sensible Atemwegsinnervation und die Tachykinine bei Asthma und chronisch-obstruktiver
Lungenerkrankung (COPD).
Pneumologie.
2006;
60
80-85
96
Geppetti P, Materazzi S, Nicoletti P.
The transient receptor potential vanilloid 1: role in airway inflammation and disease.
Eur J Pharmacol.
2006;
533
207-214
97
Peiser C, Trevisani M, Groneberg D A et al.
Dopamine type 2 receptor expression and function in rodent sensory neurons projecting
to the airways.
Am J Physiol Lung Cell Mol Physiol.
2005;
289
L153-L158
98
Levi-Montalcini R.
The nerve growth factor 35 years later.
Science.
1987;
237; 4819
1154-1162
99
Levi-Montalcini R, Skaper S D, Dal Toso R et al.
Nerve growth factor: from neurotrophin to neurokine.
Trends Neurosci.
1996;
11
514-520
100
Leon A, Buriani A, Dal Toso R et al.
Mast cells synthesize, store, and release nerve growth factor.
Proc Natl Acad Sci USA.
1994;
91; 9
3739-3743
101
Noga O, Hanf G, Gorges D et al.
Regulation of NGF and BDNF by dexamethasone and theophylline in human peripheral eosinophils
in allergics and non-allergics.
Regul Pept.
2005;
132
74-79
102
Braun A, Lommatzsch M, Mannsfeldt A et al.
Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse
model of allergic inflammation.
Am J Respir Cell Mol Bio.
1999;
21
537-546
103
Nassenstein C, Braun A, Erpenbeck V J et al.
The neurotrophins nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3,
and neurotrophin-4 are survival and activation factors for eosinophils in patients
with allergic bronchial asthma.
J Exp Med.
2003;
198
455-467
104
Virchow J C, Julius P, Lommatzsch M et al.
Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen
provocation.
Am J Respir Crit Care Med.
1998;
158
2002-2005
105
Nassenstein C, Dawbarn D, Pollock K et al.
Pulmonary distribution, regulation, and functional role of Trk receptors in a murine
model of asthma.
J Allergy Clin Immunol.
2006;
118
597-605
106
Hunter D D, Myers A C, Undem B J.
Nerve growth factor-induced phenotypic switch in guinea pig airway sensory neurons.
Am J Respir Crit Care.
2000;
161
1985-1990
PD Dr. med. Quoc Thai Dinh
Klinik für Pneumologie Leiter der Arbeitsgruppe: Experimentelle Pneumologie und Allergologie Medizinische Hochschule Hannover (MHH)
Carl-Neuberg-Str. 1 30625 Hannover
eMail: Dinh.Quoc@mh-hannover.de