References and Notes
<A NAME="RD10811ST-1A">1a</A>
Beller M.
Riermeier TH.
Stark G. In
Transition Metals
for Organic Synthesis
Vol. 1:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.208
<A NAME="RD10811ST-1B">1b</A>
Bräse S.
de Meijere A. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
Chap.
3.
<A NAME="RD10811ST-1C">1c</A>
Link JT.
Overman LE. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
Chap.
6.
<A NAME="RD10811ST-1D">1d</A>
Beletskaya IP.
Cheprakov AV.
Chem.
Rev.
2000,
100:
3009
<A NAME="RD10811ST-1E">1e</A>
Poli G.
Giambastiani G.
Heumann A.
Tetrahedron
2000,
56:
5959
<A NAME="RD10811ST-1F">1f</A>
Link JT.
Org. React.
2002,
60:
157
<A NAME="RD10811ST-2A">2a</A>
Farina V.
Krishnamurthy V.
Scott W.
J. Org. React.
1997,
50:
1
<A NAME="RD10811ST-2B">2b</A>
Duncton MAJ.
Pattenden G.
J.
Chem. Soc., Perkin Trans. 1
1999,
1235
<A NAME="RD10811ST-2C">2c</A>
Gonthier E.
Breinbauer R.
Mol. Diversity
2005,
9:
51
<A NAME="RD10811ST-2D">2d</A>
Echavarren AM.
Angew. Chem. Int. Ed.
2005,
44:
3962 ; Angew. Chem. 2005, 117, 4028
For a selection of reviews, see:
<A NAME="RD10811ST-3A">3a</A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RD10811ST-3B">3b</A>
Chemler SR.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4544 ; Angew. Chem. 2001, 113, 4676
<A NAME="RD10811ST-3C">3c</A>
Darses S.
Genet J.-P.
Eur. J. Org. Chem.
2003,
4313
<A NAME="RD10811ST-3D">3d</A>
Bellina F.
Carpita A.
Rossi R.
Synthesis
2004,
2419
<A NAME="RD10811ST-3E">3e</A>
Suzuki A.
Chem. Commun.
2005,
4759
<A NAME="RD10811ST-3F">3f</A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4442; Angew. Chem. 2005, 117, 4516
<A NAME="RD10811ST-3G">3g</A>
Kantchev EAB.
O’Brien
CJ.
Organ MG.
Aldrichimica
Acta
2006,
39:
97
<A NAME="RD10811ST-4A">4a</A>
Casser L.
J. Organomet. Chem.
1975,
93:
253
<A NAME="RD10811ST-4B">4b</A>
Dieck HA.
Heck FR.
J.
Organomet. Chem.
1975,
93:
259
<A NAME="RD10811ST-4C">4c</A>
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron
Lett.
1975,
31:
4467
<A NAME="RD10811ST-4D">4d</A>
Sonogashira K. In
Comprehensive Organic Synthesis
Vol.
32:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.521
<A NAME="RD10811ST-4E">4e</A>
Beller M.
Zapf A.
Handbook
of Organopalladium Chemistry for Organic Synthesis
Vol.
1:
Negishi E.
Wiley-Interscience;
New
York:
2002.
p.1209
<A NAME="RD10811ST-4F">4f</A>
Negishi IE.
Anastasia L.
Chem.
Rev.
2003,
103:
1979
<A NAME="RD10811ST-5A">5a</A>
Kosugi M.
Kameyama M.
Migita T.
Chem. Lett.
1983,
927
<A NAME="RD10811ST-5B">5b</A>
Guram AS.
Buchwald SL.
J.
Am. Chem. Soc.
1994,
116:
7901
<A NAME="RD10811ST-5C">5c</A>
Guram AS.
Runnels RA.
Buchwald SL.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1348
<A NAME="RD10811ST-5D">5d</A>
Yang BH.
Buchwald SL.
J.
Oganomet. Chem.
1999,
576:
125
<A NAME="RD10811ST-5E">5e</A>
Shaughnessy KH.
Hamann BC.
Hartwig JF.
J. Org. Chem.
1998,
63:
6546
<A NAME="RD10811ST-5F">5f</A>
Khartulyari AS.
Maier ME.
Eur.
J. Org. Chem.
2007,
317
<A NAME="RD10811ST-5G">5g</A>
Satyanarayana G.
Maier ME.
Tetrahedron
2008,
64:
356
For some reviews, see:
<A NAME="RD10811ST-6A">6a</A>
Kakiuchi F.
Chatani N.
Adv. Synth. Catal.
2003,
345:
1077
<A NAME="RD10811ST-6B">6b</A>
Dunina VV.
Gorunova ON.
Russ.
Chem. Rev.
2004,
73:
309
<A NAME="RD10811ST-6C">6c</A>
Godula K.
Sames D.
Science
2006,
312:
67
For some recent illustrative examples,
see:
<A NAME="RD10811ST-7A">7a</A>
Ohno H.
Yamamoto M.
Iuchi M.
Tanaka T.
Angew. Chem. Int. Ed.
2005,
44:
5103 ; Angew. Chem. 2005, 117, 5233
<A NAME="RD10811ST-7B">7b</A>
Bertrand MB.
Wolfe JP.
Org.
Lett.
2007,
9:
3073
<A NAME="RD10811ST-7C">7c</A>
Rudolph A.
Rackelmann N.
Lautens M.
Angew. Chem.
Int. Ed.
2007,
46:
1485 ; Angew. Chem. 2007, 119, 1507
<A NAME="RD10811ST-8A">8a</A>
Solé D.
Serrano O.
Angew.
Chem. Int. Ed.
2007,
46:
7270
<A NAME="RD10811ST-8B">8b</A>
Solé D.
Serrano O.
J. Org. Chem.
2008,
73:
9372
<A NAME="RD10811ST-8C">8c</A>
Solé D.
Serrano O.
J. Org. Chem.
2010,
75:
6267
<A NAME="RD10811ST-9A">9a</A>
Hartwig JF.
Angew. Chem. Int.
Ed.
1998,
37:
2046
<A NAME="RD10811ST-9B">9b</A>
Honda T.
Namiki H.
Satoh F.
Org.
Lett.
2001,
3:
631
<A NAME="RD10811ST-9C">9c</A>
Gaertzen O.
Buchwald SL.
J. Org. Chem.
2002,
67:
465
<A NAME="RD10811ST-10">10</A>
Bentley KW.
Nat.
Prod. Rep.
2006,
23:
444
<A NAME="RD10811ST-11">11</A>
Scott JD.
Williams RM.
Chem. Rev.
2002,
102:
1669
<A NAME="RD10811ST-12">12</A>
Stermitz FR.
Lorenz P.
Tawara JN.
Zenewicz LA.
Lewis K.
Proc.
Natl. Acad. Sci. U.S.A.
2000,
97:
1433
<A NAME="RD10811ST-13">13</A>
Cortijo J.
Villagrasa V.
Pons R.
Berto L.
Marti-Cabrera M.
Martinez-Losa M.
Domenech T.
Beleta J.
Morcillo EJ.
Br.
J. Pharmacol.
1999,
127:
1641
<A NAME="RD10811ST-14">14</A>
Kashiwada Y.
Aoshima A.
Ikeshiro Y.
Chen Y.-P.
Furukawa H.
Itoigawa M.
Fujioka T.
Mihashi K.
Cosentino LM.
Morris-Natschke SL.
Lee K.-H.
Bioorg.
Med. Chem.
2005,
13:
443
<A NAME="RD10811ST-15">15</A>
Goodman AJ.
Le Bourdonnec B.
Dolle RE.
ChemMedChem.
2007,
2:
1552
<A NAME="RD10811ST-16">16</A>
Brossi A.
Grethe G.
Teitel S.
Wildman WC.
Bailey DT.
J. Org. Chem.
1970,
35:
1100
<A NAME="RD10811ST-17">17</A>
Kobayashi S.
Tokumoto T.
Taira Z.
J.
Chem. Soc., Chem. Commun.
1984,
1043
<A NAME="RD10811ST-18">18</A> Canadine synthesis:
Matulenko MA.
Meyers AI.
J.
Org. Chem.
1996,
61:
573
<A NAME="RD10811ST-19">19</A> Synthesis of stepharinine and pronuciferine:
Honda T.
Shigehisa H.
Org.
Lett.
2006,
8:
657
<A NAME="RD10811ST-20">20</A> Erythrocarine isolation:
Chawla AS.
Redha FMJ.
Jackson AH.
Phytochemistry
1985,
24:
1821
<A NAME="RD10811ST-21">21</A> 6,6a-Dihydrodemethoxygaudiscine
isolation:
<A NAME="RD10811ST-22">22</A>
Costa EV.
Marques FA.
Pinheiro MLB.
Vaz NP.
Duarte MCT.
Delarmelina C.
Braga RM.
Sales Maia BHLN.
J. Nat. Prod.
2009,
72:
1516
<A NAME="RD10811ST-23">23</A>
Chandrasekhar S.
Reddy NR.
Rao YS.
Tetrahedron Lett.
2006,
62:
12098
<A NAME="RD10811ST-24A">24a</A>
Escalante J.
Carrillo-Morales M.
Linzaga I.
Molecules
2008,
13:
340
<A NAME="RD10811ST-24B">24b</A>
Roy O.
Faure S.
Thery V.
Didierjean C.
Taillefumier C.
Org.
Lett.
2008,
10:
921
<A NAME="RD10811ST-25">25</A>
General Procedure
for Buchwald-Hartwig Cyclization: The following Procedure
for 4a is Representative
In an oven-dried Schlenk
tube under nitrogen atmosphere were taken Pd(OAc)2 (10
mol%), Ph3P (20 mol%), and Cs2CO3 (2
mmol) in toluene (ca. 1.5 mL), and the mixture was stirred for 5
min. To this mixture was added ester 3a (1 mmol)
in toluene (ca. 3.0 mL), and the reaction mixture was stirred for
24 h at 80 ˚C. Progress of the reaction was monitored by
TLC, and, after the reaction is complete, it was quenched by addition
of aq NH4Cl and extracted with CH2Cl2 (3 × 20
mL). The organic layer was dried over Na2SO4,
filtered, and concentrated under reduced pressure. Purification
of the residue by column chromatography on silica gel using PE-EtOAc
as eluent furnished the product 4a in 82% yield.
Representative Analytical Data
Compound 4a: IR: 3027, 2982, 1732, 1684, 1452, 1242, 1166,
1034, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.36-7.10
(m, 8 H, ArH), 7.06-6.98 (m, 1 H, ArH), 4.20-4.10
(m, 2 H, OCH
2CH3),
3.85 (dd, 1 H, J = 5.2,
5.2 Hz,
4′-H), 3.80 [d, 1 H, J = 14.9 Hz,
NCH2 (a,b)], 3.74 [d, 1 H, J = 13.2 Hz,
NCH2 (a′,b′)], 3.65 [d,
1 H, J = 13.2
Hz, NCH2 (a′,b′)], 3.59 [d,
1 H, J = 14.9
Hz, NCH2(a,b)], 3.18 (dd, J = 11.5,
5.6 Hz, 1 H, NCH
2aCHCOOEt),
2.85 (dd, J = 11.5, 4.8
Hz, 1 H, N-CH
2bCHCOOEt), 1.23
(t, J = 7.2
Hz, 3 H, OCH2CH
3)
ppm. ¹³C NMR (50 MHz, CDCl3): δ = 173.25
(s, OC=O), 138.13 (s, ArC), 135.19 (s, ArC), 131.58 (s,
ArC), 129.31 (d, ArC), 129.05 (d, 2 C, ArC), 128.32 (d, 2 C, ArC), 127.25
(d, ArC),126.92 (d, ArC), 126.75 (d, ArC), 126.31 (d, ArC), 62.31
(t, NCH2), 60.95 (t, OCH2CH3),
56.11 (t, NCH2), 52.95 (t, C-3′), 45.46 (d,
C-4′), 14.22 (q, OCH2
CH3) ppm.
Compound 4b: 79% yield. IR: 2931, 2828,
1729, 1610, 1514, 1455, 1252, 1134, 1031, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.41-7.24
(m, 5 H, ArH), 6.74 (s, 1 H, ArH), 6.52 (s, 1 H, ArH), 4.26-4.06
(m, 2 H, OCH
2CH3), 3.85
(s, 3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.78
(dd, 1 H, J = 5.0,
5.0 Hz, 4′-H), 3.74 [d, 1 H, J = 13.1
Hz, NCH2(a′,b′)], 3.67 [d,
1 H, J = 14.5
Hz, NCH2(a,b)], 3.65 [d, 1 H, J = 13.1 Hz,
NCH2(a′,b′)], 3.52 [d,
1 H, J = 14.5
Hz, NCH2(a,b)], 3.17 (dd, 1 H, J = 11.4,
5.5 Hz, NCH
2aCHCOOEt), 2.85
(dd, 1 H, J = 11.4,
4.8 Hz, NCH
2bCHCOOEt), 1.22
(t, 3 H, J = 7.1
Hz, OCH2CH
3) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 173.3
(s, OC=O), 148.1 (s, ArC), 147.48 (s, ArC), 138.10 (s,
ArC), 129.05 (d, 2 C, ArC), 128.29 (d, 2 C, ArC), 127.36 (s, ArC),
127.22 (d, ArC), 123.27 (s, ArC), 111.82 (d, ArC), 109.22 (d, ArC), 62.23
(t, NCH2), 60.87 (t, OCH2CH3),
55.92 (q, ArOCH3), 55.83 (q, ArOCH3), 55.66
(t, NCH2), 52.98 (t, C-3′), 44.91 (d, C-4′),
14.24 (q, OCH2
CH3)
ppm. HRMS (ESI+): m/z calcd
for [C21H25NNaO4]+ = [M + Na]+:
378.1676; found: 378.1685.
Compound 4c:
85% based on the recovery of 19% of starting material.
IR: 2938, 2834, 1732, 1598, 1458, 1238, 1118, 741 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 7.42-7.20
(m, 5 H, ArH), 6.35 (s, 1 H, ArH), 4.25-4.00 (m, 2 H, OCH
2CH3), 3.87 (s,
3 H, ArOCH3), 3.83 (s, 3 H, ArOCH3), 3.81
(s, 3 H, ArOCH3), 3.80-3.67 (m, 1 H, 4′-H),
3.74 [d, 1 H, J = 14.8 Hz,
NCH2(a,b)], 3.72 [d, 1 H, J = 13.2 Hz,
NCH2(a′,b′)], 3.70 [d,
1 H, J = 14.8
Hz, NCH2(a,b)], 3.60 [d, 1 H, J = 13.2 Hz,
NCH2(a′,b′)], 3.08 (dd, 1
H, J = 11.5,
5.1 Hz, NCH
2aCHCOOEt), 2.81
(dd, 1 H, J = 11.5,
5.1 Hz, NCH
2bCHCOOEt), 1.20
(t, 3 H, J = 7.2
Hz, OCH2CH
3) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 173.86
(s, OC=O), 152.79 (s, ArC), 151.54 (s, ArC), 140.05 (s,
ArC), 138.05 (s, ArC), 130.75 (s, ArC), 128. 94 (d, ArC), 128.59
(s, ArC), 128.30 (d, ArC), 127.22 (d, ArC), 118.36 (s, ArC), 104.82 (d,
ArC), 61.98 (t, NCH2), 60.71 (q, ArOCH3),
60.69 (t, NCH2), 60.33 (q, ArOCH3), 55.90
(t, 2 C, OCH2CH3 and OCH3),
53.48 (t, NCH2CHCOOEt), 41.27
(d, NCH2
CHCOOEt), 14.23 (q,
OCH2
CH3) ppm. HRMS (ESI+): m/z calcd for [C22H27NNaO4]+ = [M + Na]+: 408.1781;
found: 408.1787.