References and Notes
<A NAME="RD09511ST-1A">1a</A>
Fluorine in Bioorganic Chemistry
Filler R.
Kobayasi Y.
Yagupolskii LM.
Elsevier;
Amsterdam:
1993.
<A NAME="RD09511ST-1B">1b</A>
Filler R.
Fluorine Containing Drugs in Organofluorine Chemicals
and their Industrial Application
Pergamon;
New York:
1979.
Chap.
6.
<A NAME="RD09511ST-1C">1c</A>
Hudlicky M.
Chemistry of Organic Compounds
Ellis
Horwood;
Chichester:
1992.
<A NAME="RD09511ST-1D">1d</A>
Kirsch P.
Modern Fluoroorganic Chemistry
Wiley-VCH;
Weinheim:
2004.
<A NAME="RD09511ST-1E">1e</A>
Chambers RD.
Fluorine in Organic
Chemistry
Blackwell Publishing CRC Press;
Boca Raton:
2004.
<A NAME="RD09511ST-1F">1f</A>
Purser S.
Moore PR.
Swallow S.
Gouverneur V.
Chem. Soc. Rev.
2008,
37:
320
<A NAME="RD09511ST-2A">2a</A>
Ryckmanns T.
Balancon L.
Berton O.
Genicot C.
Lamberty Y.
Lallemand B.
Passau P.
Pirlot N.
Quéré L.
Talaga P.
Bioorg.
Med. Chem. Lett.
2002,
12:
261
<A NAME="RD09511ST-2B">2b</A>
Malamas MS.
Sredy J.
Moxham C.
Katz A.
Xu W.
McDevitt R.
Adebayo FO.
Sawicki DR.
Seestaller L.
Sullivan D.
Taylor JR.
J.
Med. Chem.
2000,
43:
1293
<A NAME="RD09511ST-2C">2c</A>
Ciha AJ.
Ruminski PG.
J.
Agric. Food Chem.
1991,
39:
2072
<A NAME="RD09511ST-2D">2d</A>
Albrecht HA.
Beskid G.
Georgopapadakou NH.
Keith DD.
Konzelmann FM.
Pruess DL.
Rossman PL.
Wei CC.
Christenson JG.
J.
Med. Chem.
1991,
34:
2857
<A NAME="RD09511ST-2E">2e</A>
Albrecht HA.
Beskid G.
Christenson JG.
Deitcher KH.
Georgopapadakou NH.
Keith DD.
Konzelmann FM.
Pruess DL.
Wie CC.
J.
Med. Chem.
1994,
37:
400
<A NAME="RD09511ST-2F">2f</A>
Song CW.
Lee KY.
Kim CD.
Chang T.-M.
Chey WY.
J. Pharmacol. Exp. Ther.
1997,
281:
1312
<A NAME="RD09511ST-2G">2g</A>
De Voss JJ.
Sui Z.
DeCamp DL.
Salto R.
Babe LM.
Craik CS.
Ortiz de Montellano PR.
J.
Med. Chem.
1994,
37:
665
<A NAME="RD09511ST-2H">2h</A>
Anjaiah S.
Chandrasekhar S.
Gree R.
Adv.
Synth. Catal.
2004,
346:
1329
<A NAME="RD09511ST-2I">2i</A>
Iorio MA.
Paszkowska RT.
Frigeni V.
J. Med. Chem.
1987,
30:
1906
<A NAME="RD09511ST-2J">2j</A>
Popp JL.
Musza LL.
Barrow CJ.
Rudewicz PJ.
Houck DR.
J. Antibiot.
1994,
47:
411
<A NAME="RD09511ST-2K">2k</A>
Chen TS.
Petuch B.
MacConnell J.
White R.
Dezeny G.
J. Antibiot.
1994,
47:
1290
<A NAME="RD09511ST-2L">2l</A>
Lam KS.
Schroeder DR.
Veitch JMJM.
Colson KL.
Matson JA.
Rose WC.
Doyle TW.
Forenza S.
J.
Antibiot.
2001,
54:
1
<A NAME="RD09511ST-2M">2m</A>
Bégué JP.
Bonnet-Delpon D.
J.
Fluorine Chem.
2006,
127:
992
<A NAME="RD09511ST-2N">2n</A>
Isanbor C.
O’Hagan D.
J. Fluorine Chem.
2006,
127:
303
<A NAME="RD09511ST-3A">3a</A>
Metal-Catalyzed Cross-Coupling Reactions
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
<A NAME="RD09511ST-3B">3b</A>
Beller M.
Neumann H.
Anbarasan P.
Angew.
Chem. Int. Ed.
2009,
48:
1
<A NAME="RD09511ST-3C">3c</A>
Schmidbaur H.
Kumberger O.
Chem. Ber.
1993,
126:
3
<A NAME="RD09511ST-3D">3d</A>
Dinger MB.
Henderson W.
J. Organomet.
Chem.
1998,
560:
233
<A NAME="RD09511ST-3E">3e</A>
Liedtke J.
Loss S.
Widauer C.
Grützmacher H.
Tetrahedron
2000,
56:
143
<A NAME="RD09511ST-3F">3f</A>
Schneider S.
Tzschucke CC.
Bannwarth W.
Multiphase Homogeneous Catalysis
Cornils B.
Herrmann WA.
Horvath IT.
Leitner W.
Mecking S.
Olivier-Booubigou H.
Vogt D.
Wiley-VCH;
Weinheim:
2005.
Chap.
4.
p.346
<A NAME="RD09511ST-3G">3g</A>
Clarke D.
Ali MA.
Clifford AA.
Parratt A.
Rose P.
Schwinn D.
Bannwarth W.
Rayner CM.
Curr. Top. Med. Chem.
2004,
7:
729
Reviews:
<A NAME="RD09511ST-4A">4a</A>
Wittkopp A.
Schreiner PR.
The
Chemistry of Diens and Polyenes
Vol. 2:
John
Wiley and Sons;
Chichester:
2000.
<A NAME="RD09511ST-4B">4b</A> See also:
Schreiner PR.
Chem. Soc. Rev.
2003,
32:
289
<A NAME="RD09511ST-4C">4c</A>
Wittkopp A.
Schreiner PR.
Chem. Eur. J.
2003,
9:
407
<A NAME="RD09511ST-4D">4d</A>
Kleiner CM.
Schreiner PR.
Chem.
Commun.
2006,
4315
<A NAME="RD09511ST-4E">4e</A> Review:
Kotke M.
Schreiner PR.
Synthesis
2007,
779
<A NAME="RD09511ST-4F">4f</A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701
<A NAME="RD09511ST-5">5</A> Review:
McClinton MA.
McClinton DA.
Tetrahedron
1992,
48:
6555
<A NAME="RD09511ST-6A">6a</A>
Ding W.
Pu J.
Zhang C.
Synthesis
1992,
635
<A NAME="RD09511ST-6B">6b</A>
Guan H.-P.
Hu C.-M.
Synthesis
1996,
1363
<A NAME="RD09511ST-6C">6c</A>
Guan H.-P.
Hu C.-M.
J. Fluorine Chem.
1996,
78:
101
<A NAME="RD09511ST-6D">6d</A>
Hojo M.
Masuda R.
Kokuryo Y.
Shioda H.
Matsuo S.
Chem.
Lett.
1976,
499
<A NAME="RD09511ST-6E">6e</A>
Hojo M.
Masuda R.
Sakaguchi S.
Takagawa M.
Synthesis
1986,
1016
<A NAME="RD09511ST-6F">6f</A>
Colla A.
Martins MAP.
Clar G.
Krimmer S.
Fischer P.
Synthesis
1991,
483
<A NAME="RD09511ST-6G">6g</A>
Hojo M.
Masuda R.
Okada E.
Synthesis
1989,
215
<A NAME="RD09511ST-6H">6h</A> Reviews:
Zanatta N.
Barichello R.
Bonacorso HG.
Martins MAP.
Synthesis
1999,
765
<A NAME="RD09511ST-6I">6i</A>
Nenaidenko VG.
Sanin AV.
Balenkova ES.
Russ. Chem. Rev.
1999,
68:
437
<A NAME="RD09511ST-6J">6j</A>
Billard T.
Chem.
Eur. J.
2006,
12:
974
<A NAME="RD09511ST-6K">6k</A>
Druzhinin SV.
Balenkova ES.
Nenajdenko VG.
Tetrahedron
2007,
63:
7753
<A NAME="RD09511ST-6L">6l</A>
Marzi E.
Mongin F.
Spitaleri A.
Schlosser M.
Eur. J. Org. Chem.
2001,
2911
<A NAME="RD09511ST-6M">6m</A>
Dmowski W.
Piasecka-Maciejewska K.
J. Fluorine Chem.
1996,
78:
59
<A NAME="RD09511ST-6N">6n</A>
Abubakar AB.
Booth BL.
Suliman NNE.
Tipping AE.
J.
Fluorine Chem.
1992,
56:
359
<A NAME="RD09511ST-6O">6o</A>
Barlow MG.
Suliman NNE.
Tipping AE.
J. Fluorine Chem.
1995,
70:
59
<A NAME="RD09511ST-6P">6p</A>
Volochnyuk DM.
Kostyuk AN.
Sibgatulin DA.
Chernega AN.
Pinchuk AM.
Tolmachev AA.
Tetrahedron
2004,
60:
2361
<A NAME="RD09511ST-6Q">6q</A>
Volochnyuk DM.
Kostyuk AN.
Sibgatulin DA.
Chernega AN.
Tetrahedron
2005,
61:
2839
<A NAME="RD09511ST-6R">6r</A>
Mamat C.
Pundt T.
Schmidt A.
Langer P.
Tetrahedron Lett.
2006,
47:
2183
<A NAME="RD09511ST-6S">6s</A>
Mamat C.
Pundt T.
Dang THT.
Klassen R.
Reinke H.
Köckerling M.
Langer P.
Eur.
J. Org. Chem.
2008,
492
<A NAME="RD09511ST-6T">6t</A> For a review, see:
Bunescu A.
Reimann S.
Lubbe M.
Spannenberg A.
Langer P.
J. Org. Chem.
2009,
74:
5002
<A NAME="RD09511ST-6U">6u</A>
Langer P.
Synlett
2009,
2205
For reviews of cross-coupling reactions
of polyhalogenated heterocycles, see:
<A NAME="RD09511ST-7A">7a</A>
Schröter S.
Stock C.
Bach T.
Tetrahedron
2005,
61:
2245
<A NAME="RD09511ST-7B">7b</A>
Schnürch M.
Flasik R.
Khan AF.
Spina M.
Mihovilovic MD.
Stanetty P.
Eur. J.
Org. Chem.
2006,
3283
<A NAME="RD09511ST-8A">8a</A>
Dang TT.
Dang TT.
Ahmad R.
Reinke H.
Langer P.
Tetrahedron Lett.
2008,
49:
1698
<A NAME="RD09511ST-8B">8b</A>
Dang TT.
Villinger A.
Langer P.
Adv. Synth. Catal.
2008,
350:
2109
<A NAME="RD09511ST-8C">8c</A>
Hussain M.
Nguyen TH.
Langer P.
Tetrahedron
Lett.
2009,
50:
3929
<A NAME="RD09511ST-8D">8d</A>
Tengho Toguem S.-M.
Hussain M.
Malik I.
Villinger A.
Langer P.
Tetrahedron Lett.
2009,
50:
4962
<A NAME="RD09511ST-8E">8e</A>
Hussain M.
Malik I.
Langer P.
Synlett
2009,
2691
<A NAME="RD09511ST-8F">8f</A>
Dang TT.
Dang TT.
Rasool N.
Villinger A.
Langer P.
Adv. Synth. Catal.
2009,
351:
1595
<A NAME="RD09511ST-8G">8g</A>
Ullah I.
Khera RA.
Hussain M.
Langer P.
Tetrahedron Lett.
2009,
50:
4651
<A NAME="RD09511ST-8H">8h</A>
Nawaz M.
Farooq MI.
Obaid-Ur-Rahman A.
Khera RA.
Villinger A.
Langer P.
Synlett
2010,
150
<A NAME="RD09511ST-8I">8i</A>
Nawaz M.
Farooq MI.
Obaid-Ur-Rahman A.
Khera RA.
Villinger A.
Langer P.
Synlett
2010,
150
<A NAME="RD09511ST-8J">8j</A>
Hussain M.
Nguyen TH.
Khera RA.
Villinger A.
Langer P.
Tetrahedron Lett.
2011,
52:
184
<A NAME="RD09511ST-9A">9a</A>
Sharif M.
Zeeshan M.
Reimann S.
Villinger A.
Langer P.
Tetrahedron Lett.
2010,
51:
2810
<A NAME="RD09511ST-9B">9b</A>
Sharif M.
Reimann S.
Villinger A.
Langer P.
Synlett
2010,
913
<A NAME="RD09511ST-10">10</A>
Typical Procedure
for Suzuki-Miyaura Reactions
The reaction
was carried out in a pressure tube. To a dioxane suspension (5 mL)
of 1, Pd(PPh3)4 (3-5
mol%), and of the arylboronic acid 2a-o was added an aq solution of K2CO3 (2 M,
1-2 mL). The mixture was heated at 70 ˚C
(3a-o)
or 90 ˚C (4a-o) under argon for 8 h. The solution was
cooled to 20 ˚C, poured into H2O and
CH2Cl2 (5 mL each), and the organic and the
aqueous layers were separated. The latter was extracted with CH2Cl2 (3 × 15
mL). The combined organic layers were washed with H2O
(3 × 10 mL), dried (Na2SO4),
filtered, and concentrated in vacuo. The residue was purified by
chromatography (flash silica gel, heptanes-EtOAc).
<A NAME="RD09511ST-11">11</A>
4-Bromo-4′-
tert
-butyl-3-(trifluoromethyl)biphenyl (3g)
Starting with 1 (150
mg, 0.5 mmol) and 2g (90 mg, 0.5 mmol), 3g was isolated as a colorless viscous
oil (158 mg, 88%). ¹H NMR (300 MHz,
298 K, CDCl3): δ = 1.28 [s,
9 H, (CH3)3], 7.42 (s, 4 H, HAr),
7.50 (dd, J = 2.1,
8.3 Hz, 1 H, HAr), 7.67 (d, J = 8.2
Hz, 1 H, HAr), 7.80 (d, J = 2.1
Hz, 1 H, HAr). ¹9F NMR (282 MHz,
298 K, CDCl3): δ = -62.61. ¹³C NMR
(75 MHz, 298 K, CDCl3): δ = 31.2 [(CH3)3],
34.6 [C(CH3)3], 118.3 (J
C-F = 1.9
Hz, CAr), 123.0 (J
C-F = 272
Hz, CF3), 126.1, 126.3 (J
C-F = 5.4
Hz), 126.6 (CHAr), 130.4
(J
C-F = 31.7
Hz, CAr), 131.1, 135.2 (CHAr), 135.7, 140.6, 151.6
(CAr). IR (neat): 3034, 2961, 2868, 1601 (w), 1473, 1418
(m), 1325 (s), 1251, 1172 (m), 1129, 1100 (s), 1021 (m), 962 (w),
902 (m), 818 (s), 743, 697, 659 (m), 603 (w), 566 (m) cm-¹.
GC-MS (EI, 70 eV): m/z (%) = 358
(28) [M+, 8¹Br],
344 (18), 343 (98), 342 (19), 341 (100), 315 (20), 313 (20), 262
(10), 233 (7), 222 (8), 165 (7), 157 (8), 156 (9). HRMS (EI): m/z calcd for C17H16
8¹BrF3 [M]+:
358.036150; found: 358.036852.
<A NAME="RD09511ST-12">12</A>
2-Trifluoromethyl-1,4-bis(4-methoxyphenyl)benzene (4h)
Starting
with 1 (150 mg, 0.5 mmol) and 2t (190 mg, 1.25 mmol), 4h was
isolated as a viscous oil (167 mg, 93%). ¹H NMR
(300 MHz, 298 K, CDCl3): δ = 3.77,
3.78 (s, 6 H, 2 OCH3), 6.86 (d, J = 8.7
Hz, 2 H, HAr), 6.93 (d, J = 8.7
Hz, 2 H, HAr), 7.18-7.27 (m, 3 H, HAr),
7.48 (d, J = 8.8
Hz, 2 H, HAr), 7.62 (dd, J = 8.8,
1.6 Hz, 1 H, HAr), 7.82 (d, J = 1.6
Hz, 1 H, HAr). ¹9F NMR (282 MHz,
298 K, CDCl3): δ = -56.83. ¹³C
NMR (75 MHz, 298 K, CDCl3): δ = 55.2,
55.4 (OCH3), 113.3, 114.5, 124.2 (J
C-F = 4.5
Hz) (CHAr) 124.3 (J
C-F = 275 Hz,
CF3), 128.1, 129.2, 130.1 (J
C-F = 1.4
Hz, CHAr), 130.8 (J
C-F = 30.9
Hz, CAr), 132.0 (CHAr), 132.8, 139.2, 139.3, 139.8
(J
C-F = 1.9
Hz), 159.1, 159.7 (CAr). IR (neat): 3028, 2922 (w), 1605,
1475 (m), 1395 (w), 1321, 1270, 1241, 1165 (m), 1118 (s), 1074,
1050, 1032 (m), 972 (w), 895, 839 (m), 778, 705 (s), 663, 607 (m)
cm-¹. GC-MS (EI, 70 eV): m/z (%) = 359
(22) [M + 1], 358 (100) [M+],
344 (12), 243 (32), 315 (14), 300(14), 271 (17), 251 (41), 207 (15),
202 (22), 179 (49), 157 (28). HRMS (EI): m/z calcd
for C21H17O2F3 [M]+: m/z = 358.117520;
found: 358.116620.
<A NAME="RD09511ST-13">13</A>
1-(3′,4′-Dimethoxy)-phenyl-4-naphthyl-2-trifluoromethyl-benzene (5b)
Starting with 3j (88
mg, 0.25 mmol) and 2m (45 mg, 0.25 mmol), 5b was obtained as a yellowish crystalline
solid (87 mg, 85%). ¹H NMR (300 MHz,
298 K, CDCl3): δ = 3.81, 3.84
(s, 6 H, 2 OCH3), 6.82-6.86 (m, 3 H, HAr),
7.36-7.45 (m, 3 H, HAr), 7.67 (dd, J = 8.5, 1.8
Hz, 1 H, HAr), 7.77-7.87 (m, 4 H, HAr),
8.00 (s, 2 H, HAr). ¹9F NMR (282
MHz, 298K, CDCl3): δ = -56.72. ¹³C
NMR (75 MHz, 298K, CDCl3): δ = 55.9,
56.0 (OCH3), 110.4, 112.6, 121.4 (CHAr), 122.8 (J
C-F = 275.2
Hz, CF3), 125.0, 125.1, 126.0, 126.4, 126.6 (CHAr),
127.1, 127.3 (CAr), 127.7, 128.3 (CHAr), 128.5
(J
C-F = 29.7
Hz, CAr), 128.8, 129.9 (CHAr), 132.1 (CAr),
132.9 (CHAr), 133.6, 136.7, 140.0, 140.2, 148.2, 148.7
(CAr). IR (neat): 3052, 2954, 2834, 1602 (w), 1495, 1462,
1407 (m), 1369 (w), 1314 (m), 1244, 1217, 1164, 1118 (s), 1071 (m), 1022
(s), 952, 886, 857 (m), 811, 748 (s), 719, 644, 607, 553 (m) cm-¹.
GC-MS (EI, 70 eV): m/z (%)
409 (27) [M + 1], 408 (100) [M+],
393 (13), 365 (32), 350 (29), 326 (23), 325 (47), 322 (30), 305
(14), 297 (16), 296 (44), 253 (14), 252 (39), 204 (59), 163 (52),
162 (36). HRMS (EI): m/z calcd
for C25H19O2F3 [M]+:
408.133170; found: 408.133547.
<A NAME="RD09511ST-14">14</A>
CCDC-822983 (3j)
and CCDC-822984 (4i) contain all crystallographic
details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html
or
can be ordered from the following address: Cambridge Crystallographic
Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: +44
(1223)336033; or deposit@ccdc.cam.ac.uk.
<A NAME="RD09511ST-15">15</A> For a simple guide for the prediction
of the site selectivity of palladium(0)-catalyzed cross-coupling
reactions based on the ¹H NMR chemical shift
values, see:
Handy ST.
Zhang Y.
Chem. Commun.
2006,
299