Abstract
Novel, efficient synthetic pathways were developed for the synthesis of a variety
of pyridazino-fused polycyclic ring systems not easily accessible by other routes.
The strategy is based on the sequential or one-pot combinations of a palladium catalyzed
C-C bond forming process (Suzuki or Heck-type reaction) and a C-X (X = N, O) or another
C-C bond forming reaction (for C-X: nucleophilic substitution, condensation, lactonization,
nitrene C-H insertion, Buchwald-Hartwig amination; for C-C: Pschorr reaction, Heck-type
reaction). Some of these methodologies have also been extended to the preparation
of several diazino-fused ring systems.
1 Introduction
2 Results
2.1 Suzuki Reaction of Halopyridazinones
2.2 Suzuki Reaction and Nitrene Insertion or Azo-Coupling
2.3 Suzuki Reaction and Nucleophilic Substitution or Condensation Reaction
2.4 Suzuki Reaction and Heck-Type Arylation
2.5 Suzuki Reaction and Pschorr Reaction
2.6 Nucleophilic Substitution Reaction and Heck-Type Arylation
2.7 Buchwald-Hartwig Reaction of Halopyridazinones
2.8 Buchwald-Hartwig Reaction and Heck-Type Arylation
3 Conclusion
4 References
Key words
pyridazine - palladium-catalyzed reaction - pyridazino-fused ring systems - diazino-fused
ring systems
References
<A NAME="RA33803ST-1A">1a </A>
Mátyus P.
Kosáry J.
Kasztreiner E.
Makk N.
Diesler E.
Czakó K.
Rabloczky G.
Jaszlits L.
Horváth E.
Tömösközi Z.
Cseh G.
Horváth E.
Arányi P.
Eur. J. Med. Chem.
1992,
27:
107
<A NAME="RA33803ST-1B">1b </A>
Mátyus P.
Varga I.
Zára E.
Mezei A.
Behr Á..
Simay A.
Haider N.
Boros S.
Bakonyi A.
Horváth E.
Horváth K.
Bioorg. Med. Chem. Lett.
1997,
7:
2857
<A NAME="RA33803ST-1C">1c </A>
Pankucsi C.
Magyar J.
Bányász T.
Mátyus P.
Nánási PP.
IDrugs
1998,
1:
554
<A NAME="RA33803ST-1D">1d </A>
Mátyus P.
Pharmazie
2001,
56:
50
<A NAME="RA33803ST-2">2 </A>
Drugs Future
1999,
24:
1072 ; and references therein
<A NAME="RA33803ST-3A">3a </A>
Mátyus P.
Fuji K.
Tanaka K.
Heterocycles
1993,
36:
1975
<A NAME="RA33803ST-3B">3b </A>
Mátyus P.
Fuji K.
Tanaka K.
Heterocycles
1994,
37:
171
<A NAME="RA33803ST-3C">3c </A>
Mátyus P.
Zára-Kaczián E.
Boros S.
J. Heterocycl. Chem.
1996,
33:
583
<A NAME="RA33803ST-3D">3d </A>
Krajsovszky G.
Gaál A.
Haider N.
Mátyus P.
J. Mol. Struct.
2000,
528:
13
<A NAME="RA33803ST-3E">3e </A>
Schwartz A.
Beke G.
Kovári Z.
Böcskey Z.
Farkas Ö.
Mátyus P.
J. Mol. Struct.
2000,
528:
49
<A NAME="RA33803ST-3F">3f </A>
Éliás O.
Károlyházy L.
Stájer G.
Fülöp F.
Czakó K.
Harmath V.
Barabás O.
Keserû K.
Mátyus P.
J. Mol. Struct.
2001,
545:
75
<A NAME="RA33803ST-3G">3g </A>
Károlyházy L.
Horváth G.
Mátyus P.
Acta Pharm. Hung.
2001,
71:
168
<A NAME="RA33803ST-4A">4a </A>
Timári G.
Soós T.
Hajós G.
Messmer A.
Nacsa J.
Molnár J.
Bioorg. Med. Chem. Lett.
1996,
6:
2831
<A NAME="RA33803ST-4B">4b </A>
Timári G.
Soós T.
Hajós G.
Synlett
1997,
1067
<A NAME="RA33803ST-4C">4c </A>
Csányi D.
Timári G.
Hajós G.
Synth. Commun.
1999,
29:
3959
<A NAME="RA33803ST-4D">4d </A>
Soós T.
Timári G.
Hajós G.
Tetrahedron Lett.
1999,
40:
8607
<A NAME="RA33803ST-4E">4e </A>
Csányi D.
Hajós G.
Riedl Z.
Timári G.
Bajor Z.
Cochard F.
Sapi J.
Laronze JY.
Bioorg. Med. Chem. Lett.
2000,
10:
1767
<A NAME="RA33803ST-4F">4f </A>
Béres M.
Timári G.
Hajós G.
Tetrahedron Lett.
2002,
43:
6035
<A NAME="RA33803ST-5A">5a </A> For the direct C-functionalization of pyridazines via Minisci reaction see:
Heinisch G.
Bull. Soc. Chim. Belg.
1992,
101:
579
<A NAME="RA33803ST-5B">5b </A> For the direct functionalization of chloropyridazines via aluminum chloride induced
reaction see:
Pollak A.
Stanovnik B.
Tiler M.
J. Org. Chem.
1966,
31:
4297
<A NAME="RA33803ST-5C">5c </A> And:
Coates WJ.
McKillop A.
J. Org. Chem.
1990,
55:
5418
<A NAME="RA33803ST-6">6 </A>
Maes BUW.
Komrlj J.
Lemière GLF.
J. Heterocycl. Chem.
2002,
39:
535 ; and references cited therein
<A NAME="RA33803ST-7A">7a </A>
Turck A.
Plé N.
Mojovic L.
Quéguiner G.
Bull. Soc. Chim. Fr.
1993,
130:
488
<A NAME="RA33803ST-7B">7b </A>
Trécourt F.
Turck A.
Plé N.
Paris A.
Quéguiner G.
J. Heterocycl. Chem.
1995,
32:
1057
<A NAME="RA33803ST-7C">7c </A>
Draper TL.
Bailey TR.
J. Org. Chem.
1995,
60:
748
<A NAME="RA33803ST-7D">7d </A>
Parrot I.
Rival Y.
Wermuth CG.
Synthesis
1999,
1163
<A NAME="RA33803ST-7E">7e </A>
Estévez I.
Coelho A.
Raviña E.
Synthesis
1999,
1666
<A NAME="RA33803ST-7F">7f </A>
Gong Y.
Pauls HW.
Synlett
2000,
6:
829
For reviews on 4,5-dihalo-3(2H )-pyridazinones see:
<A NAME="RA33803ST-8A">8a </A>
Mátyus P.
Czakó K. In Trends in Heterocyclic Chemistry
Vol. 3:
Council of Scientific Information Publishing;
Trivandrum:
1993.
p.249
<A NAME="RA33803ST-8B">8b </A>
Tapolcsányi P.
Mátyus P. In Targets in Heterocyclic Systems
Vol. 6:
Italian Chemical Society;
Italy:
2002.
p.369
<A NAME="RA33803ST-9">9 </A>
Mátyus P.
Czakó K.
Behr Á.
Varga I.
Podányi B.
von Arnim M.
Várkonyi P.
Heterocycles
1993,
36:
785
<A NAME="RA33803ST-10A">10a </A>
Maes BUW.
RŽkyek O.
Komrlj J.
Lemière GLF.
Esmans E.
Rozenski J.
Dommisse RA.
Haemers A.
Tetrahedron
2001,
57:
1323
<A NAME="RA33803ST-10B">10b </A>
R’kyek O.
Maes BUW.
Jonckers THM.
Lemière GLF.
Dommisse R.
Tetrahedron
2001,
57:
10009
<A NAME="RA33803ST-10C">10c </A>
Riedl Z.
Maes BUW.
Monsieurs K.
Lemière GLF.
Mátyus P.
Hajós G.
Tetrahedron
2002,
58:
5645
<A NAME="RA33803ST-11A">11a </A> see ref. 8
<A NAME="RA33803ST-11B">11b </A>
Cho SD.
Choi WY.
Yoon YJ.
J. Heterocycl. Chem.
1996,
33:
1579
<A NAME="RA33803ST-11C">11c </A>
Lyga JW.
J. Heterocycl. Chem.
1988,
25:
1757
<A NAME="RA33803ST-11D">11d </A>
Barlin GB.
Lakshminarayanan P.
J. Chem. Soc., Perkin Trans. 1
1977,
1038
<A NAME="RA33803ST-12">12 </A>
Gronowitz S.
Bobosik V.
Lawitz K.
Chem. Scr.
1984,
23:
120
<A NAME="RA33803ST-13A">13a </A>
Gronowitz S.
Timári G.
J. Heterocycl. Chem.
1990,
27:
1159
<A NAME="RA33803ST-13B">13b </A>
Gronowitz S.
Timári G.
J. Heterocycl. Chem.
1990,
27:
1127
<A NAME="RA33803ST-14A">14a </A>
Krajsovszky G.
Mátyus P.
Riedl Z.
Csányi D.
Hajós G.
Heterocycles
2001,
55:
1105
<A NAME="RA33803ST-14B">14b </A>
Tapolcsányi P.
Krajsovszky G.
Andó R.
Lipcsey P.
Horváth G.
Mátyus P.
Riedl Z.
Hajós G.
Maes BUW.
Lemière LF.
Tetrahedron
2002,
58:
10137
<A NAME="RA33803ST-15">15 </A>
Éliás, O.; Tapolcsányi, P.; Mátyus, P. et al., unpublished results.
<A NAME="RA33803ST-16">16 </A>
Andrási F,
Angyal Á, and
Bezsenyi P. inventors; Internatl. Pat. Appl. WO 00/27851.
et al.
; Chem. Abstr . 2000 , 132 , 334478
<A NAME="RA33803ST-17">17 </A>
Atkinson CM.
Rodway RE.
J. Chem. Soc.
1959,
1
<A NAME="RA33803ST-18">18 </A>
Nagashima H.
Oda H.
Hayakawa T.
Kaji K.
Heterocycles
1987,
26:
1
<A NAME="RA33803ST-19">19 </A>
Maes BUW.
Monsieurs K.
Loones KTJ.
Lemière GLF.
Dommisse R.
Mátyus P.
Riedl Z.
Hajós G.
Tetrahedron
2002,
58:
9713
Examples of Pd-catalyzed intramolecular arylation:
<A NAME="RA33803ST-20A">20a </A>
Rice JE.
Cai ZW.
Tetrahedron Lett.
1992,
33:
1675
<A NAME="RA33803ST-20B">20b </A>
Rice JE.
Cai ZW.
J. Org. Chem.
1993,
58:
1415
<A NAME="RA33803ST-20C">20c </A>
Hennings DD.
Iwasa S.
Rawal VH.
Tetrahedron Lett.
1997,
38:
6379
<A NAME="RA33803ST-20D">20d </A>
Hennings DD.
Iwasa S.
Rawal VH.
J. Org. Chem.
1997,
62:
2
<A NAME="RA33803ST-20E">20e </A>
Gonzalez JJ.
Garcia N.
Gómez Lor B.
Echavarren AM.
J. Org. Chem.
1997,
62:
1286
<A NAME="RA33803ST-20F">20f </A>
Bringmann G.
Breuning M.
Tasler S.
Synthesis
1999,
525
<A NAME="RA33803ST-20G">20g </A>
Reisch HA.
Bratcher MS.
Scott LT.
Org. Lett.
2000,
2:
1427
<A NAME="RA33803ST-20H">20h </A>
Wang L.
Shelvin PB.
Org. Lett.
2000,
2:
3703
<A NAME="RA33803ST-20I">20i </A>
Marcinov Z.
Sygula A.
Ellern A.
Rabideau PW.
Org. Lett.
2001,
3:
3527
<A NAME="RA33803ST-20J">20j </A>
Mehta G.
Sarma PVVS.
Tetrahedron Lett.
2002,
43:
6557
<A NAME="RA33803ST-20K">20k </A>
Echavarren AM.
Gómez JJ.
de Frutos Ó.
Synlett
2003,
585
<A NAME="RA33803ST-20L">20l </A>
Wegner HA.
Scott LT.
de Meijere A.
J. Org. Chem.
2003,
68:
883
<A NAME="RA33803ST-21">21 </A>
Tapolcsányi P.
Maes BUW.
Monsieurs K.
Lemière GLF.
Riedl Z.
Hajós G.
Van den Driessche B.
Dommisse RA.
Mátyus P.
Tetrahedron
2003,
59:
5919
<A NAME="RA33803ST-22">22 </A>
Fitton P.
Rick EA.
J. Organomet. Chem.
1971,
28:
287
<A NAME="RA33803ST-23">23 </A>
Smith BM.
March J.
Advanced Organic Chemistry
5th ed.:
Wiley-Interscience;
New York:
2000.
Chap. 14.17.
p.928-929
<A NAME="RA33803ST-24">24 </A> For a review for transformations of aryldiazonium salts see:
Galli C.
Chem. Rev.
1988,
88:
765
For examples of intramolecular Heck-type reactions for the construction of carbazole
carboline and dibenzofurane skeletons and their aza-analogues see:
<A NAME="RA33803ST-25A">25a </A>
Iida H.
Yuasa Y.
Kibayashi C.
J. Org. Chem.
1980,
45:
2938
<A NAME="RA33803ST-25B">25b </A>
Ames DE.
Bull D.
Tetrahedron
1982,
38:
383
<A NAME="RA33803ST-25C">25c </A>
Ames DE.
Opalko A.
Synthesis
1983,
234
<A NAME="RA33803ST-25D">25d </A>
Chen CY.
Lieberman DR.
Larsen RD.
Verhoeven TR.
Reider PJ.
J. Org. Chem.
1997,
62:
2676
<A NAME="RA33803ST-25E">25e </A>
Iwaki T.
Yasuhara A.
Sakamoto T.
J. Chem. Soc., Perkin Trans. 1
1999,
1505
<A NAME="RA33803ST-25F">25f </A>
Edmondson SD.
Mastracchio A.
Parmee ER.
Org. Lett.
2000,
2:
1109
<A NAME="RA33803ST-25G">25g </A>
Zhang YM.
Razler T.
Jackson PF.
Tetrahedron Lett.
2002,
43:
8235
<A NAME="RA33803ST-25H">25h </A>
Bedford RB.
Cazin CSJ.
Chem. Commun.
2002,
2310
<A NAME="RA33803ST-25I">25i </A>
Jonckers THM.
Maes BUW.
Lemière GLF.
Rombouts G.
Pieters L.
Haemers A.
Dommisse RA.
Synlett
2003,
615
<A NAME="RA33803ST-25J">25j </A>
Ferreira ICFR.
Queiroz MJRP.
Kirsch G.
Tetrahedron
2003,
59:
3737
<A NAME="RA33803ST-26">26 </A>
Dajka-Halász B.
Monsieurs K.
Éliás O.
Károlyházy L.
Tapolcsányi P.
Maes BUW.
Riedl Z.
Hajós G.
Dommisse RA.
Lemière GLF.
Komrlj J.
Mátyus P.
Tetrahedron
2004,
60:
2283
For the synthesis of 2-substituted 5-aryloxy-4-halopyridazin-3(2H )-ones via phenolysis of 2-substituted 4,5-dihalopyridazin-3(2H )-ones see:
<A NAME="RA33803ST-27A">27a </A>
Kang YJ.
Chung HA.
Kweon DH.
Cho SD.
Lee SG.
Kim SK.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
595
<A NAME="RA33803ST-27B">27b </A>
Kweon DH.
Kang YJ.
Chung HA.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
819
<A NAME="RA33803ST-27C">27c </A>
Kweon DH.
Chung JW.
Cho SD.
Kim SK.
Yoon YJ.
J. Heterocycl. Chem.
1998,
35:
1401
<A NAME="RA33803ST-27D">27d </A>
Chung HA.
Kim JJ.
Cho SD.
Lee SG.
Yoon YJ.
J. Heterocycl. Chem.
2002,
39:
685
<A NAME="RA33803ST-28">28 </A> ‘Pd(PPh3 )2 X2 , M2 CO3 and Bu4 NY in DMF’ are the ‘Jefferey’s’ reaction conditions. For intermolecular Heck reactions
under ‘Jefferey’s’ conditions see:
Jefferey T.
Tetrahedron
1996,
52:
10113
For reviews on the Buchwald-Hartwig reaction see:
<A NAME="RA33803ST-29A">29a </A>
Barañano D.
Mann G.
Hartwig JF.
Curr. Org. Chem.
1997,
1:
287
<A NAME="RA33803ST-29B">29b </A>
Frost CG.
Mendonça P.
J. Chem. Soc., Perkin Trans. 1
1998,
2615
<A NAME="RA33803ST-29C">29c </A>
Hartwig JF.
Angew. Chem. Int. Ed.
1998,
37:
2047
<A NAME="RA33803ST-29D">29d </A>
Yang BH.
Buchwald SL.
J. Organomet. Chem.
1999,
576:
125
<A NAME="RA33803ST-29E">29e </A>
Hartwig JF.
In Modern Amination Methods
Ricci A.
Wiley-VCH;
Weinheim:
2000.
p.195-262
<A NAME="RA33803ST-29F">29f </A>
Muci AR.
Buchwald SL.
Top. Curr. Chem.
2002,
219:
131
<A NAME="RA33803ST-29G">29g </A> For recent reviews containing a chapter on the Buchwald-Hartwig reaction see:
Littke AF.
Fu GC.
Angew. Chem. Int. Ed.
2002,
41:
4176
<A NAME="RA33803ST-29H">29h </A> See also:
Prim D.
Campagne JM.
Joseph D.
Andrioletti B.
Tetrahedron
2002,
58:
2041
<A NAME="RA33803ST-30">30 </A>
Komrlj J.
Maes BUW.
Lemière GLF.
Haemers A.
Synlett
2000,
1581
<A NAME="RA33803ST-31">31 </A>
Wolfe JP.
Buchwald SL.
J. Org. Chem.
2000,
65:
1144
<A NAME="RA33803ST-32">32 </A>
Wolfe JP.
Buchwald SL.
Tetrahedron Lett.
1997,
38:
6359
<A NAME="RA33803ST-33">33 </A>
Wolfe JP.
Buchwald SL.
J. Org. Chem.
1997,
62:
6066
<A NAME="RA33803ST-34A">34a </A>
Watanabe M.
Nishiyama M.
Yamamoto T.
Koie Y.
Tetrahedron Lett.
2000,
41:
481
<A NAME="RA33803ST-34B">34b </A> For other examples dealing with the rate accelerating effect of large excesses
of carbonate bases on Pd-catalyzed aminations see:
Jonckers THM.
Maes BUW.
Lemière GLF.
Dommisse R.
Tetrahedron
2001,
57:
7027
<A NAME="RA33803ST-34C">34c </A> And:
Maes BUW.
Loones KTJ.
Jonckers THM.
Lemière GLF.
Dommisse RA.
Haemers A.
Synlett
2002,
1995