Abstract
It was found that monofluoroarenes were reduced to the corresponding hydrodefluorinated
arenes by the treatment of 5 mol% of NbCl5 and LiAlH4 . Based on the substituent effect observed, an aromatic nucleophilic substitution
mechanism is proposed.
Key words
fluorine - reductions - nucleophilic aromatic substitutions - niobium - hydrodefluorination
catalyst
References
For review, see:
<A NAME="RU07504ST-1A">1a </A>
Kiplinger JL.
Richmond TG.
Osterberg CE.
Chem. Rev.
1994,
94:
373
<A NAME="RU07504ST-1B">1b </A>
Alonso F.
Beletskaya IP.
Yus M.
Chem. Rev.
2002,
102:
4009
For examples, see:
<A NAME="RU07504ST-2A">2a </A>
Aizenberg M.
Milstein D.
Science
1994,
265:
359
<A NAME="RU07504ST-2B">2b </A>
Aizenberg M.
Milstein D.
J. Am. Chem. Soc.
1995,
117:
8674
<A NAME="RU07504ST-2C">2c </A>
Edelbach BL.
Jones WD.
J. Am. Chem. Soc.
1997,
119:
7734
<A NAME="RU07504ST-2D">2d </A>
Braun T.
Cronin L.
Higgitt CL.
McGrady JE.
Perutz RN.
Reinhold M.
New J. Chem.
2001,
25:
19
<A NAME="RU07504ST-2E">2e </A>
Kraft BM.
Jones WD.
J. Organomet. Chem.
2002,
658:
132
<A NAME="RU07504ST-2F">2f </A>
Laev SS.
Evtefeev VU.
Shteingarts VD.
J. Fluorine Chem.
2001,
110:
43
For examples of stoichiometric reductions, see:
<A NAME="RU07504ST-3A">3a </A>
Imamoto T.
Takeyama T.
Kusumoto T.
Chem. Lett.
1985,
1491
<A NAME="RU07504ST-3B">3b </A>
Kraft BM.
Lachicotte RJ.
Jones WD.
J. Am. Chem. Soc.
2001,
123:
10973
<A NAME="RU07504ST-3C">3c </A> For catalytic reductions, see:
Li H.
Liao S.
Xu Y.
Chem. Lett.
1996,
1059
<A NAME="RU07504ST-3D">3d </A> See further:
Yang H.
Gao H.
Angelici RJ.
Organometallics
1999,
18:
2285
<A NAME="RU07504ST-3E">3e </A>
Young RJ.
Grushin VV.
Organometallics
1999,
18:
294
<A NAME="RU07504ST-3F">3f </A>
Kuhl S.
Schneider R.
Fort Y.
Adv. Synth. Catal.
2003,
345:
341
<A NAME="RU07504ST-3G">3g </A>
Cellier PP.
Spindler J.-F.
Taillefer M.
Cristau H.-J.
Tetrahedron Lett.
2003,
44:
7191
<A NAME="RU07504ST-3H">3h </A> See also:
Yus M.
Synlett
2001,
1197
<A NAME="RU07504ST-4">4 </A> Oshima and Sato reported reduction of organic compounds employing stoichiometric
amounts of low valent niobium species generated from NbCl5 and NaAlH4 . See:
Sato M.
Oshima K.
Chem. Lett.
1982,
157
<A NAME="RU07504ST-5">5 </A>
p -Fluorobiphenyl reacted with LiAlH4 alone to give 13% yield of biphenyl and 81% recovery of the starting material after
4 h reflux in DME.
<A NAME="RU07504ST-6">6 </A>
Typical Procedure : To a DME solution (3 mL) of p -fluorobiphenyl (217 mg, 1.26 mmol) and NbCl5 (17 mg, 0.06 mmol) was added LiAlH4 (96 mg, 2.52 mmol) in one portion. The clear yellow solution turned to dark gray
immediately and gas evolved exothermically. After being refluxed for 4 h, the reaction
mixture was quenched with H2 O at 0 °C. Sodium tartrate (0.2 g) was added and extraction with EtOAc gave the crude
mixture. Purification by silica gel column chromatography (hexane) afforded biphenyl
(176 mg, 1.14 mmol, 91%).
<A NAME="RU07504ST-7">7 </A>
When LiAlH4 was added to a DME solution of fluoroarene and NbCl5 , gas evolved exothermically.
It was reported that treatment of NbCl5 with 2 molar amounts of n -Bu3 SnH gave NbCl3 (DME) complex with gas evolution:
<A NAME="RU07504ST-8A">8a </A>
Roskamp EJ.
Pedersen SF.
J. Am. Chem. Soc.
1987,
109:
6551
<A NAME="RU07504ST-8B">8b </A>
Hartung JB.
Pedersen SF.
Organometallics
1990,
9:
1414
<A NAME="RU07504ST-8C">8c </A> See also:
Tebbe FN.
Parshall GW.
J. Am. Chem. Soc.
1971,
93:
3793
<A NAME="RU07504ST-8D">8d </A>
Klabunde U.
Parshall GW.
J. Am. Chem. Soc.
1972,
94:
9081
<A NAME="RU07504ST-9">9 </A> A variety of h6 -arene complexes of niobium and tantalum have been reported:
Morris MJ. In Comprehensive Organometallic Chemistry II
Vol. 5:
Abel AW.
Stone FGA.
Wilkinson G.
Pergamon;
New York:
1995.
p.471
<A NAME="RU07504ST-10">10 </A>
Use of LiAlD4 instead of LiAlH4 resulted in quantitative formation of p -deuteriobiphenyl of 79% D (5 mol% of NbCl5 , 2.0 equiv of LiAlD4 , reflux in DME, 4 h; deuterium incorporation was determined based on integrals of
1 H NMR spectrum).
<A NAME="RU07504ST-11A">11a </A> Djukic and coworkers reported hydride attack to h6 -fluoro(triisopropyl)benzene chromium tricarbonyl complex. See:
Djukic JP.
Geysermans P.
Rose-Munch F.
Rose E.
Tetrahedron Lett.
1991,
32:
6703
<A NAME="RU07504ST-11B">11b </A>
Jones and coworkers proposed an aromatic nucleophilic addition mechanism for their
reduction of fluorobenzene with zirconium hydride, see ref. 3b. We rejected a mechanism
in which the niobium hydride species undergoes aromatic nucleophilic substitution
and adopted a direct hydride attack mechanism because use of n -Bu3 SnH instead of LiAlH4 resulted in 88% recovery of the p -fluorobiphenyl (5 mol% of NbCl5 , 2.4 molar amounts of n -Bu3 SnH, reflux in DME, 4 h).
It is already known that some η6 -arene complexes of transition metals such as chromium, iron, and manganese undergo
aromatic nucleophilic substitution, but liberation of arene ligand does not take place
readily and stoichiometric amounts of the metal are required. For reviews, see:
<A NAME="RU07504ST-12A">12a </A>
Semmelhack MF. In Comprehensive Organometallic Chemistry II
Vol. 12:
Abel AW.
Stone FGA.
Wilkinson G.
Pergamon;
New York:
1995.
p.929
<A NAME="RU07504ST-12B">12b </A> For reactions of fluorobenzene complexes:
Mahaffy CAL.
Pauson PL.
J. Chem. Res.
1979,
128
<A NAME="RU07504ST-12C">12c </A>
Baldoli C.
DelButtero P.
Licandro E.
Maiorana S.
Gazz. Chim. Ital.
1988,
118:
409