Abstract
Molecular iodine in aqueous ammonia at 60 °C efficiently oxidized various primary,
secondary, and tertiary amines to their corresponding nitriles in good yields.
Key words
amines - iodine - nitriles - aqueous ammonia
References and Notes
<A NAME="RU08506ST-1A">1a </A>
Cohen MA.
Sawden J.
Turner NJ.
Tetrahedron Lett.
1990,
31:
7223
<A NAME="RU08506ST-1B">1b </A>
Murahashi S.-I.
Synthesis from Nitriles with Retention of the Cyano Group, In Science of Synthesis
Vol. 19:
Murahashi S.-I.
Georg Thieme Verlag;
Stuttgart:
2004.
p.345-402
<A NAME="RU08506ST-1C">1c </A>
Collier SJ.
Langer P.
Applications of Nitriles as Reagents for Organic Synthesis with Loss of the Nitrile
Functionality (Including Cycloaddition Reactions), In Science of Synthesis
Vol. 19:
Murahashi S.-I.
Georg Thieme Verlag;
Stuttgart:
2004.
p.403-425
<A NAME="RU08506ST-2">2 </A>
Fabiani ME.
Drug News Perspect.
1999,
12:
207
<A NAME="RU08506ST-3">3 </A>
Comprehensive Organic Transformation
Larock RC.
VCH Publishers, Inc./VCH Verlagsgesellschaft;
New York/Weinheim:
1989.
p.976-993
<A NAME="RU08506ST-4A">4a </A>
Clarke TG.
Hampson NA.
Lee JB.
Morley JR.
Scanlon B.
Tetrahedron Lett.
1968,
5685
<A NAME="RU08506ST-4B">4b </A>
Vargha L.
Remenyi M.
J. Chem. Soc.
1951,
1068
<A NAME="RU08506ST-4C">4c </A>
Cason J.
Org. Synth., Coll. Vol. III
Wiley;
New York:
1955.
p.3
<A NAME="RU08506ST-4D">4d </A>
Mihailović ML.
Stojiljković A.
Andrejević V.
Tetrahedron Lett.
1965,
461
<A NAME="RU08506ST-4E">4e </A>
Stojiljković A.
Andrejević V.
Mihailović ML.
Tetrahedron
1967,
23:
721
<A NAME="RU08506ST-4F">4f </A>
Below JS.
Garza C.
Mathieson JW.
J. Chem. Soc. D
1970,
634
<A NAME="RU08506ST-4G">4g </A>
Troyanskii EI.
Svitanko IV.
Ioffe VA.
Nikishin GI.
Izv. Akad. Nauk SSSR, Ser. Khim.
1982,
2180
<A NAME="RU08506ST-4H">4h </A>
Yamazaki S.
Yamazaki Y.
Bull. Chem. Soc. Jpn.
1990,
63:
301
<A NAME="RU08506ST-4I">4i </A>
Biondini D.
Brinchi L.
Germani R.
Goracci L.
Savelli G.
Eur. J. Org. Chem.
2005,
3060
<A NAME="RU08506ST-4J">4j </A>
Chen E.
Peng Z.
Fu H.
Liu J.
Shao L.
J. Chem. Res., Synop.
1999,
726
<A NAME="RU08506ST-4K">4k </A>
Lee GA.
Freedman HH.
Tetrahedron Lett.
1976,
1641
<A NAME="RU08506ST-4L">4l </A>
Yamazaki S.
Synth. Commun.
1997,
27
<A NAME="RU08506ST-4M">4m </A>
Jursic B.
J. Chem. Res., Synop.
1988,
168
<A NAME="RU08506ST-4N">4n </A>
Nikishin GI.
Troyanskii EI.
Joffe VA.
Izv. Akad. Nauk SSSR, Ser. Khim.
1982,
2758
<A NAME="RU08506ST-4O">4o </A>
Kametani T.
Takahashi K.
Ohsawa T.
Ihara M.
Synthesis
1977,
245
<A NAME="RU08506ST-4P">4p </A>
Capdevielle P.
Lavigne A.
Maumy M.
Synthesis
1989,
453
<A NAME="RU08506ST-4Q">4q </A>
Capdevielle P.
Lavigne A.
Sparfel D.
Baranne-Lafont J.
Nguyen KC.
Maumy M.
Tetrahedron Lett.
1990,
31:
3305
<A NAME="RU08506ST-4R">4r </A>
Maeda Y.
Nishimura T.
Uemura S.
Bull. Chem. Soc. Jpn.
2003,
76:
2399
<A NAME="RU08506ST-4S">4s </A>
Tang R.
Diamond SE.
Neary N.
Mares F.
J. Chem. Soc., Chem. Commun.
1978,
562
<A NAME="RU08506ST-4T">4t </A>
Schröder M.
Griffith WP.
J. Chem. Soc., Chem. Commun.
1979,
58
<A NAME="RU08506ST-4U">4u </A>
Bailey AJ.
James BR.
Chem. Commun.
1996,
2343
<A NAME="RU08506ST-4V">4v </A>
Mori K.
Yamaguchi K.
Mizugaki T.
Ebitani K.
Kaneda K.
Chem. Commun.
2001,
461
<A NAME="RU08506ST-4W">4w </A>
Yamaguchi K.
Mizuno N.
Angew. Chem. Int. Ed.
2003,
42:
1480
<A NAME="RU08506ST-4X">4x </A>
Moriarty RM.
Vaid RK.
Duncan MP.
Ochiai M.
Inenaga M.
Nagao Y.
Tetrahedron Lett.
1988,
29:
6913
<A NAME="RU08506ST-4Y">4y </A>
Chen F.
Kuang Y.
Dai H.
Lu L.
Huo M.
Synthesis
2003,
2629
<A NAME="RU08506ST-5A">5a </A>
Mori N.
Togo H.
Synlett
2004,
880
<A NAME="RU08506ST-5B">5b </A>
Mori N.
Togo H.
Tetrahedron
2005,
61:
5915
<A NAME="RU08506ST-6">6 </A>
Mori N.
Togo H.
Synlett
2005,
1456
<A NAME="RU08506ST-7">7 </A>
Ishihara M.
Togo H.
Synlett
2006,
227
<A NAME="RU08506ST-8">8 </A>
Goosen A.
McCleland CW.
Sipamla AM.
J. Chem. Res. (M)
1995,
311
<A NAME="RU08506ST-9">9 </A>
Oxidative Conversion of Primary Amines to Nitriles; Typical Procedure: To a mixture of 4-methylbenzylamine (121.2 mg, 1 mmol) and aq NH3 (3.0 mL, 45 mmol) under an empty balloon was added I2 (533.0 mg, 2.1 mmol) at r.t. The resulting mixture was stirred at 60 °C. After 2
h at the same temperature, the reaction mixture was quenched with H2 O (20 mL) and a sat. aq solution of Na2 SO3 (3 mL) at 0 °C. The product was extracted with Et2 O (3 × 15 mL). The organic layer was washed with brine and dried over Na2 SO4 to provide p -tolunitrile in 80% yield in an almost pure state. If necessary, the product was purified
by column chromatography (silica gel; hexane-EtOAc, 4:1) to give pure p -tolunitrile as a colorless solid; mp 25 °C. IR (NaCl): 2230 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 2.42 (3 H, s), 7.27 (2 H, d, J = 7.9 Hz), 7.55 (2 H, d, J = 7.9 Hz). The identity of the product was confirmed by comparison of its analytical
data with a sample of the commercially available authentic compound.Oxidative Conversion of Tertiary Amines to Nitriles; Typical Procedure: To a mixture of N ,N -dimethyl-3-phenylpropylamine (163.2 mg, 1 mmol) and aq NH3 (3.0 mL, 45 mmol) under an empty balloon was added I2 (888.3 mg, 3.5 mmol) at r.t. The resulting mixture was stirred at 60 °C. After 0.5
h at the same temperature, the reaction mixture was quenched with H2 O (20 mL) and a sat. aq solution of Na2 SO3 (3 mL) at 0 °C. The product was extracted with Et2 O (3 × 15 mL). The organic layer was washed with brine and dried over Na2 SO4 to provide 3-phenylpropionitrile in 71% yield in an almost pure state. If necessary,
the product was purified by column chromatog-raphy (silica gel; (hexane-EtOAc, 4:1)
to give pure 3-phenylpropionitrile as a colorless oil. IR (NaCl): 2250 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 2.62 (2 H, t, J = 7.4 Hz), 2.96 (2 H, t, J = 7.4 Hz), 7.23 (2 H, d, J = 8.1 Hz), 7.28 (1 H, t, J = 8.2 Hz) 7.34 (2 H, t, J = 8.2 Hz). The identity of the product was confirmed by comparison of its analytical
data with a sample of the commercially available authentic compound.Oxidative Conversion of Tris(4-methylbenzyl)amine to p
-Tolunitrile : To a mixture of tris(4-methylbenzyl)amine (329.5 mg, 1 mmol) and aq NH3 (3.0 mL, 45 mmol) under an empty balloon was added I2 (1.650 g, 6.5 mmol) at r.t. The resulting mixture was stirred at 60 °C. After 4 h
at the same temperature, the reaction mixture was quenched with H2 O (20 mL) and a sat. aq solution of Na2 SO3 (3 mL) at 0 °C. The product was extracted with Et2 O (3 × 15 mL). The organic layer was washed with brine and dried over Na2 SO4 to provide p -tolunitrile in 84% yield in an almost pure state. If necessary, the product was purified
by column chromatog-raphy (silica gel; hexane-EtOAc, 4:1) to give pure p -tolu-nitrile as a colorless solid; mp 25 °C. IR (NaCl): 2230 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 2.42 (3 H, s), 7.27 (2 H, d, J = 7.9 Hz), 7.55 (2 H, d, J = 7.9 Hz).