Subscribe to RSS

DOI: 10.1590/0004-282X20190156
Assessment of ventilatory function in patients with spinocerebellar ataxia type 2
Avaliação da função ventilatória em pacientes com ataxia espinocerebelar tipo 2
Abstract
Subclinical ventilatory dysfunction is observed in individuals with spinocerebellar ataxias (SCA). No studies have correlated ventilatory dysfunction to clinical and functional decline in SCA2. Objective: To evaluate the relationship between the values of peak expiratory flow (PEF), maximum inspiratory pressure (MIP), and presence of respiratory complaints with age, disease duration, age at onset of symptoms, balance scores, independence in basic (ADL) and instrumental (IADL) Activities of Daily Living (ADLs), and severity of ataxia (SARA) in individuals with SCA2. Methods: Cross-sectional study evaluating age, disease duration, age at onset of symptoms, scores in the Berg Balance Scale and in the SARA, Functional Independence Measure and Lawton’s scale, values of PEF and MIP, and the presence of respiratory complaints. Results: The study included 36 individuals with SCA2, with a mean age of 42.5±2.4 years, disease duration of 7.6±8.2 years, age 33.7±11.5 years at onset of symptoms, and 9.9±10.3 points in the SARA scale. The lowest PEF values correlated with the longer disease duration (p=0.021). The lowest values of PEF and MIP correlated with greater balance impairment (p=0.019 and p=0.045, respectively), increased degree of dependence in the ADL (p=0.006 and p=0.050, respectively) and IADL (p=0.003 and p=0.001, respectively) scales, and highest severity of ataxia (p=0.00 and p=0.017, respectively). Respiratory complaints were observed in 12 (33.3%) individuals and were not related to age, disease duration, age at onset of symptoms, balance, independence, ataxia severity, or PEF and MIP values. Conclusion: Ventilatory dysfunction, even when asymptomatic, is related to balance impairment, independence, and ataxia severity in individuals with SCA2.
Resumo
Disfunção ventilatória subclínica tem sido observada em indivíduos com ataxias espinocerebelares (SCA). Não existem estudos relacionando disfunção ventilatória ao declínio clínico e funcional na SCA2. Objetivo: Avaliar a relação dos valores de Pico de Fluxo Expiratório (PFE), Pressão Inspiratória Máxima (PIMAX) e presença de queixas respiratórias com idade, tempo de doença, idade de início dos sintomas, escore de equilíbrio, independência para atividades básicas (AVD) e instrumentais (AIVD) de vida diária e gravidade da ataxia (SARA) em indivíduos com SCA2. Métodos: Estudo transversal, considerando: idade, tempo de doença, idade de início dos sintomas, escores nas Escalas SARA, Equilíbrio de Berg, Medida da Independência Funcional e de Lawton, valores de PFE, PIMAX e queixas respiratórias. Resultados: Foram avaliados 36 indivíduos com SCA2 com média de 42,5±2,4) anos de idade, 7,6±8,2 anos de tempo de doença, 33,7±11,5 anos de idade de início dos sintomas e 9,9±10,3 pontos na escala SARA. Os menores valores de PFE estiveram relacionados ao maior tempo de doença (p=0,021). Os menores valores de PFE e PIMAX estiveram relacionados ao maior comprometimento do equilíbrio (p=0,019; p=0,045, respectivamente), maior dependência para ADV (p=0,006; p=0,050, respectivamente) e AIVD (p=0,003; p=0,001, respectivamente) e maior gravidade da ataxia (p=0,006; p=0,017, respectivamente). Foram observadas queixas respiratórias em 12 (33,3%) indivíduos que não estiveram relacionadas à idade, idade de início dos sintomas, tempo de doença, equilíbrio, independência, gravidade da ataxia, ou valores de PFE e PIMAX. Conclusão: A disfunção ventilatória, mesmo quando assintomática, está relacionada ao comprometimento do equilíbrio, à independência e à gravidade da ataxia em indivíduos com SCA2.
Keywords:
spinocerebellar ataxia - peak expiratory flow rate - maximum inspiratory pressure - postural balance - functional independence - disease severity indexPalavras-chave:
ataxias espinocerebelares - pico de fluxo expiratório - pressões inspiratórias máximas - equilíbrio postural - independência funcional - índice de gravidade da doençaPublication History
Received: 13 September 2019
Accepted: 30 September 2019
Article published online:
13 June 2023
© 2019. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Teive HA, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol. 2015 Aug;28(4):413-22. https://doi.org/10.1097/WCO.20190156201901560227
- 2 Watson LM, Bamber E, Schnekenberg RP, Williams J, Bettencourt C, Lickiss J, et al. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am J Hum Genet. 2017 Sep;101(3):451-8. https://doi.org/10.1016/j.ajhg.2017.08.005
- 3 Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269-76. https://doi.org/10.1038/ng1196-269
- 4 Velázquez-Pérez L. An insight into the natural history of spinocerebellar ataxias. Lancet Neurol. 2015 Nov;14(11):1067-9. https://doi.org/10.1016/S1474-4422(15)00218-5
- 5 Teive HAG, Munhoz RP, Arruda WO, Lopes-Cendes I, Raskin S, Werneck LC. Spinocerebellar ataxias: genotype-phenotype correlations in 104 Brazilian families. Clinics. 2012;67(5):443-9. http://dx.doi.org/10.6061/clinics/2012(05)07
- 6 van Gaalen J, Giunti P, Van de Warrenburg BP. Movement disorders in spinocerebellar ataxias. Mov Dis. 2011 Apr;26(5):792-800. https://doi.org/10.1002/mds.23584
- 7 Shakkottai VF, Fogel BL. Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. Neurol Clin. 2017 Nov;31(4):987-1007. https://doi.org/10.1016/j.ncl.2013.04.006
- 8 Amarante TRP, Takeda SYM, Teive HAG, Zonta MB. Impact of disease duration on functional status of patients with spinocerebellar ataxia type 2. Arq Neuropsiquiatr. 2017 Nov;75(11):773-7. https://doi.org/10.1590/0004-282X20170146
- 9 SriranjinI SJ, Pal PK, Krishna N, Sathyaprabha TN. Subclinical pulmonary dysfunction in spinocerebellar ataxias 1,2,3. Acta Neurol Scand. 2010 Nov;122(5):323-8. https://doi.org/10.1111/j.1600-0404.2009.01306.x
- 10 Perlman SL. Symptomatic and disease-modifying therapy for the progressive ataxias. Neurologist. 2004 Sep;10(5):275-89.
- 11 Schmitz-Hübsch T1, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006 Jun;66(11):1717-20. https://doi.org/10.1212/01.wnl.0000219042.60538.92
- 12 Miyamoto ST, Lombardi Junior I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res. 2004;37(9):1411-21. http://doi.org/10.1590/S0100-879X2004000900017
- 13 Riberto M, Miyazaki MH, Jucá SSH, Sakamoto H, Pinto PPN, Battistella LR. Validação da Versão Brasileira da Medida de Independência Funcional. Acta Fisiatr. 2004 Aug;11(2):72-6. http://dx.doi.org/10.5935/0104-7795.20040003
- 14 Santos R, Virtuoso Junior J. Reliability of the Brazilian version of the Scale of Instrumental Activities of Daily Living. RBPS. 2008;21(4):290-6.
- 15 Sociedade Brasileira de Pneumologia e Tisiologia. Diretrizes da Sociedade Brasileira de Pneumologia e Tisiologia para o Manejo da Asma - 2012. J Pneumol. 2002 Apr;28(Supl. 3):1-238.
- 16 Leiner GC, Abramowitz S, Small MJ, Stenby VB, Lewis WA. Expiratory peak flow rate. Standard values for normal subjects. Use as a clinical test of ventilatory function. Am Rev Respir Dis. 1963 Nov;88:644-51. https://doi.org/10.1164/arrd.1963.88.5.644
- 17 Ike D, Cordeiro E, Cutlac-Neto J, Pessoa B, Jamami M. Analysis of agreement between peak expiratory flow meters and comparison of reference values. Fisioter Mov. 2017;30(3):509-17. http://dx.doi.org/10.1590/1980-5918.030.003.ao09
- 18 Machado MGR. Bases da fisioterapia respiratória: da terapia intensiva a reabilitação. 2. ed. Rio de Janeiro: Guanabara Koogan; 2018.
- 19 Parreira VF, França DC, Zampa CC, Fonseca MM, Tomich GM, Britto RR. Pressões Respiratórias Máximas. Valores encontrados e preditos em indivíduos saudáveis. Rev Bras Fisioter. 2007;11(5):361-8. http://dx.doi.org/10.1590/S1413-35552007000500006
- 20 Reyes A, Ziman M, Nosaka K. Respiratory muscle training for respiratory deficits in neurodegenerative disorders. Chest. 2013 May;143(5):1386-94. http://dx.doi.org/10.1378/chest.12.1442
- 21 Torsney KM, Forsyth D. Respiratory dysfunction in Parkinson’s disease. J R Coll Physicians Edinb. 2017 Mar;47(1):35-39. https://doi.org/10.4997/JRCPE.2017.108
- 22 Aggarwal AN, Gupta D, Jindal SK. The relationship between FEV1 and peak expiratory flow in patients with airways obstruction is poor. Chest. 2006 Nov;130(5):1454-61. https://doi.org/10.1378/chest.130.5.1454
- 23 Charles FB, Robert C, Wijdicks EFM, Zifko UA. Neurology of breathing. Philadelphia: Butterworth Heinemann; 2004.
- 24 Yu Z, Zhu Y, Chen-Plotkin AS, Clay-Falcone D, McCluskey L, Elman L, et al. PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS One. 2011 Mar 29;6(3):e17951. https://doi.org/10.1371/jounal.pone.0017951
- 25 Busse ME, Khalil H, Quinn L, Rosser AE. Physical therapy intervention for people with Huntington disease. Phys Ther. 2008 Jul;88(7):820-31. https://doi.org/10.2522/ptj.20070346
- 26 Jones U, Enright S, Busse M. Management of respiratory problems in people with neurodegenerative conditions: a narrative review. Physiotherapy. 2012 Mar;98(1):1-12. https://doi.org/10.1016/j.physio.2011.03.002
- 27 Chiara T, Martin AD, Davenport PW, Bolser DC. Expiratory muscle strength training in persons with mild to moderate disability: effect on maximal expiratory pressure, pulmonary function and maximal voluntary cough. Arch Phys Med Rehabil. 2006 Apr;87(4):468-73. https://doi.org/10.1016/apmr.2005.12.035
- 28 O'Callaghan A, Walker R. Review of pulmonary function in Parkinson’s disease. JPRLS. 2018 Apr;8:13-23. https://doi.org/10.2147/JPRLS.S114309